x, yని పరిష్కరించండి
x=12
y=8
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
x+2y=28
మొదటి సమీకరణాన్ని పరిగణించండి. సమీకరణం రెండు వైపులా 4తో గుణించండి, కనిష్ట సామాన్య గుణిజము 4,2.
4x-3y=24
రెండవ సమీకరణాన్ని పరిగణించండి. సమీకరణం రెండు వైపులా 12తో గుణించండి, కనిష్ట సామాన్య గుణిజము 3,4.
x+2y=28,4x-3y=24
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
x+2y=28
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
x=-2y+28
సమీకరణము యొక్క రెండు భాగాల నుండి 2yని వ్యవకలనం చేయండి.
4\left(-2y+28\right)-3y=24
మరొక సమీకరణములో xను -2y+28 స్థానంలో ప్రతిక్షేపించండి, 4x-3y=24.
-8y+112-3y=24
4 సార్లు -2y+28ని గుణించండి.
-11y+112=24
-3yకు -8yని కూడండి.
-11y=-88
సమీకరణము యొక్క రెండు భాగాల నుండి 112ని వ్యవకలనం చేయండి.
y=8
రెండు వైపులా -11తో భాగించండి.
x=-2\times 8+28
x=-2y+28లో yను 8 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-16+28
-2 సార్లు 8ని గుణించండి.
x=12
-16కు 28ని కూడండి.
x=12,y=8
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
x+2y=28
మొదటి సమీకరణాన్ని పరిగణించండి. సమీకరణం రెండు వైపులా 4తో గుణించండి, కనిష్ట సామాన్య గుణిజము 4,2.
4x-3y=24
రెండవ సమీకరణాన్ని పరిగణించండి. సమీకరణం రెండు వైపులా 12తో గుణించండి, కనిష్ట సామాన్య గుణిజము 3,4.
x+2y=28,4x-3y=24
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&2\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\24\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&2\\4&-3\end{matrix}\right))\left(\begin{matrix}1&2\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&-3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
\left(\begin{matrix}1&2\\4&-3\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&-3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&-3\end{matrix}\right))\left(\begin{matrix}28\\24\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-2\times 4}&-\frac{2}{-3-2\times 4}\\-\frac{4}{-3-2\times 4}&\frac{1}{-3-2\times 4}\end{matrix}\right)\left(\begin{matrix}28\\24\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&\frac{2}{11}\\\frac{4}{11}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}28\\24\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\times 28+\frac{2}{11}\times 24\\\frac{4}{11}\times 28-\frac{1}{11}\times 24\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\8\end{matrix}\right)
అంకగణితము చేయండి.
x=12,y=8
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
x+2y=28
మొదటి సమీకరణాన్ని పరిగణించండి. సమీకరణం రెండు వైపులా 4తో గుణించండి, కనిష్ట సామాన్య గుణిజము 4,2.
4x-3y=24
రెండవ సమీకరణాన్ని పరిగణించండి. సమీకరణం రెండు వైపులా 12తో గుణించండి, కనిష్ట సామాన్య గుణిజము 3,4.
x+2y=28,4x-3y=24
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
4x+4\times 2y=4\times 28,4x-3y=24
x మరియు 4xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 4తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 1తో గుణించండి.
4x+8y=112,4x-3y=24
సరళీకృతం చేయండి.
4x-4x+8y+3y=112-24
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 4x-3y=24ని 4x+8y=112 నుండి వ్యవకలనం చేయండి.
8y+3y=112-24
-4xకు 4xని కూడండి. 4x మరియు -4x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
11y=112-24
3yకు 8yని కూడండి.
11y=88
-24కు 112ని కూడండి.
y=8
రెండు వైపులా 11తో భాగించండి.
4x-3\times 8=24
4x-3y=24లో yను 8 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
4x-24=24
-3 సార్లు 8ని గుణించండి.
4x=48
సమీకరణం యొక్క రెండు వైపులా 24ని కూడండి.
x=12
రెండు వైపులా 4తో భాగించండి.
x=12,y=8
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}