v, r, ω, V, s, t, u, wని పరిష్కరించండి (సంకీర్ణ పరిష్కారం)
r=\frac{\left(\pi \omega \right)^{-\frac{1}{2}}\sqrt{2w}}{2}\text{, }t=w\text{, }s=w\text{, }v=r\omega \text{, }\omega \neq 0\text{, }V=\frac{\omega }{2\pi }\text{, }u=w\text{, }w\neq 0
r=-\frac{\left(\pi \omega \right)^{-\frac{1}{2}}\sqrt{2w}}{2}\text{, }t=w\text{, }s=w\text{, }v=r\omega \text{, }\omega \neq 0\text{, }V=\frac{\omega }{2\pi }\text{, }u=w\text{, }w\neq 0
r\neq 0\text{, }t=0\text{, }s=0\text{, }v=0\text{, }\omega =0\text{, }V=0\text{, }u=0\text{, }w=0
v, r, ω, V, s, t, u, wని పరిష్కరించండి
r=-\frac{\sqrt{\frac{2w}{\pi \omega }}}{2}\text{, }t=w\text{, }s=w\text{, }v=r\omega \text{, }\omega >0\text{, }V=\frac{\omega }{2\pi }\text{, }u=w\text{, }w>0
r=-\frac{\sqrt{\frac{2w}{\pi \omega }}}{2}\text{, }t=w\text{, }s=w\text{, }v=r\omega \text{, }\omega <0\text{, }V=\frac{\omega }{2\pi }\text{, }u=w\text{, }w<0
r=\frac{\sqrt{\frac{2w}{\pi \omega }}}{2}\text{, }t=w\text{, }s=w\text{, }v=r\omega \text{, }\omega >0\text{, }V=\frac{\omega }{2\pi }\text{, }u=w\text{, }w>0
r=\frac{\sqrt{\frac{2w}{\pi \omega }}}{2}\text{, }t=w\text{, }s=w\text{, }v=r\omega \text{, }\omega <0\text{, }V=\frac{\omega }{2\pi }\text{, }u=w\text{, }w<0
r\neq 0\text{, }t=0\text{, }s=0\text{, }v=0\text{, }\omega =0\text{, }V=0\text{, }u=0\text{, }w=0
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}