\left. \begin{array} { l } { \frac{36}{126} = n / 112 }\\ { o = 1 \cdot 2 }\\ { p = o }\\ { q = p }\\ { r = q }\\ { s = r }\\ { t = s }\\ { u = t }\\ { v = u }\\ { w = v }\\ { x = w }\\ { \text{Solve for } y \text{ where} } \\ { y = x } \end{array} \right.
n, o, p, q, r, s, t, u, v, w, x, yని పరిష్కరించండి
y=2
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
8\times 36=9n
మొదటి సమీకరణాన్ని పరిగణించండి. సమీకరణం రెండు వైపులా 1008తో గుణించండి, కనిష్ట సామాన్య గుణిజము 126,112.
288=9n
288ని పొందడం కోసం 8 మరియు 36ని గుణించండి.
9n=288
అన్ని చరరాశి విలువలు ఎడమ వైపుకి వచ్చే విధంగా భాగాలను మార్చండి.
n=\frac{288}{9}
రెండు వైపులా 9తో భాగించండి.
n=32
288ని 9తో భాగించి 32ని పొందండి.
o=2
రెండవ సమీకరణాన్ని పరిగణించండి. 2ని పొందడం కోసం 1 మరియు 2ని గుణించండి.
p=2
మూడవ సమీకరణాన్ని పరిగణించండి. సమీకరణలోని చరరాశి స్థానంలో తెలిసిన విలువలను చొప్పించండి.
q=2
నాల్గవ సమీకరణాన్ని పరిగణించండి. సమీకరణలోని చరరాశి స్థానంలో తెలిసిన విలువలను చొప్పించండి.
r=2
ఐదవ సమీకరణాన్ని పరిగణించండి. సమీకరణలోని చరరాశి స్థానంలో తెలిసిన విలువలను చొప్పించండి.
s=2
సమీకరణం (6)ను పరిగణించండి. సమీకరణలోని చరరాశి స్థానంలో తెలిసిన విలువలను చొప్పించండి.
t=2
సమీకరణం (7)ను పరిగణించండి. సమీకరణలోని చరరాశి స్థానంలో తెలిసిన విలువలను చొప్పించండి.
u=2
సమీకరణం (8)ను పరిగణించండి. సమీకరణలోని చరరాశి స్థానంలో తెలిసిన విలువలను చొప్పించండి.
v=2
సమీకరణం (9)ను పరిగణించండి. సమీకరణలోని చరరాశి స్థానంలో తెలిసిన విలువలను చొప్పించండి.
w=2
సమీకరణం (10)ను పరిగణించండి. సమీకరణలోని చరరాశి స్థానంలో తెలిసిన విలువలను చొప్పించండి.
x=2
సమీకరణం (11)ను పరిగణించండి. సమీకరణలోని చరరాశి స్థానంలో తెలిసిన విలువలను చొప్పించండి.
y=2
సమీకరణం (12)ను పరిగణించండి. సమీకరణలోని చరరాశి స్థానంలో తెలిసిన విలువలను చొప్పించండి.
n=32 o=2 p=2 q=2 r=2 s=2 t=2 u=2 v=2 w=2 x=2 y=2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}