మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x-3-y=0
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x-y=3
రెండు వైపులా 3ని జోడించండి. సున్నాతో ఏ సంఖ్యను కూడినా అదే సంఖ్య వస్తుంది.
4x-3y=37
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
x-y=3,4x-3y=37
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
x-y=3
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
x=y+3
సమీకరణం యొక్క రెండు వైపులా yని కూడండి.
4\left(y+3\right)-3y=37
మరొక సమీకరణములో xను y+3 స్థానంలో ప్రతిక్షేపించండి, 4x-3y=37.
4y+12-3y=37
4 సార్లు y+3ని గుణించండి.
y+12=37
-3yకు 4yని కూడండి.
y=25
సమీకరణము యొక్క రెండు భాగాల నుండి 12ని వ్యవకలనం చేయండి.
x=25+3
x=y+3లో yను 25 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=28
25కు 3ని కూడండి.
x=28,y=25
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
x-3-y=0
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x-y=3
రెండు వైపులా 3ని జోడించండి. సున్నాతో ఏ సంఖ్యను కూడినా అదే సంఖ్య వస్తుంది.
4x-3y=37
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
x-y=3,4x-3y=37
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&-1\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\37\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&-1\\4&-3\end{matrix}\right))\left(\begin{matrix}1&-1\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-3\end{matrix}\right))\left(\begin{matrix}3\\37\end{matrix}\right)
\left(\begin{matrix}1&-1\\4&-3\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-3\end{matrix}\right))\left(\begin{matrix}3\\37\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-3\end{matrix}\right))\left(\begin{matrix}3\\37\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-\left(-4\right)}&-\frac{-1}{-3-\left(-4\right)}\\-\frac{4}{-3-\left(-4\right)}&\frac{1}{-3-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}3\\37\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&1\\-4&1\end{matrix}\right)\left(\begin{matrix}3\\37\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 3+37\\-4\times 3+37\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\25\end{matrix}\right)
అంకగణితము చేయండి.
x=28,y=25
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
x-3-y=0
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x-y=3
రెండు వైపులా 3ని జోడించండి. సున్నాతో ఏ సంఖ్యను కూడినా అదే సంఖ్య వస్తుంది.
4x-3y=37
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
x-y=3,4x-3y=37
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
4x+4\left(-1\right)y=4\times 3,4x-3y=37
x మరియు 4xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 4తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 1తో గుణించండి.
4x-4y=12,4x-3y=37
సరళీకృతం చేయండి.
4x-4x-4y+3y=12-37
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 4x-3y=37ని 4x-4y=12 నుండి వ్యవకలనం చేయండి.
-4y+3y=12-37
-4xకు 4xని కూడండి. 4x మరియు -4x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-y=12-37
3yకు -4yని కూడండి.
-y=-25
-37కు 12ని కూడండి.
y=25
రెండు వైపులా -1తో భాగించండి.
4x-3\times 25=37
4x-3y=37లో yను 25 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
4x-75=37
-3 సార్లు 25ని గుణించండి.
4x=112
సమీకరణం యొక్క రెండు వైపులా 75ని కూడండి.
x=28
రెండు వైపులా 4తో భాగించండి.
x=28,y=25
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.