x, yని పరిష్కరించండి
x=-5
y=5
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
8x+6y=-10,-8x-5y=15
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
8x+6y=-10
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
8x=-6y-10
సమీకరణము యొక్క రెండు భాగాల నుండి 6yని వ్యవకలనం చేయండి.
x=\frac{1}{8}\left(-6y-10\right)
రెండు వైపులా 8తో భాగించండి.
x=-\frac{3}{4}y-\frac{5}{4}
\frac{1}{8} సార్లు -6y-10ని గుణించండి.
-8\left(-\frac{3}{4}y-\frac{5}{4}\right)-5y=15
మరొక సమీకరణములో xను \frac{-3y-5}{4} స్థానంలో ప్రతిక్షేపించండి, -8x-5y=15.
6y+10-5y=15
-8 సార్లు \frac{-3y-5}{4}ని గుణించండి.
y+10=15
-5yకు 6yని కూడండి.
y=5
సమీకరణము యొక్క రెండు భాగాల నుండి 10ని వ్యవకలనం చేయండి.
x=-\frac{3}{4}\times 5-\frac{5}{4}
x=-\frac{3}{4}y-\frac{5}{4}లో yను 5 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-15-5}{4}
-\frac{3}{4} సార్లు 5ని గుణించండి.
x=-5
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{15}{4}కు -\frac{5}{4}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-5,y=5
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
8x+6y=-10,-8x-5y=15
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}8&6\\-8&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\15\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}8&6\\-8&-5\end{matrix}\right))\left(\begin{matrix}8&6\\-8&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&6\\-8&-5\end{matrix}\right))\left(\begin{matrix}-10\\15\end{matrix}\right)
\left(\begin{matrix}8&6\\-8&-5\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&6\\-8&-5\end{matrix}\right))\left(\begin{matrix}-10\\15\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&6\\-8&-5\end{matrix}\right))\left(\begin{matrix}-10\\15\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{8\left(-5\right)-6\left(-8\right)}&-\frac{6}{8\left(-5\right)-6\left(-8\right)}\\-\frac{-8}{8\left(-5\right)-6\left(-8\right)}&\frac{8}{8\left(-5\right)-6\left(-8\right)}\end{matrix}\right)\left(\begin{matrix}-10\\15\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{8}&-\frac{3}{4}\\1&1\end{matrix}\right)\left(\begin{matrix}-10\\15\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{8}\left(-10\right)-\frac{3}{4}\times 15\\-10+15\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\5\end{matrix}\right)
అంకగణితము చేయండి.
x=-5,y=5
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
8x+6y=-10,-8x-5y=15
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-8\times 8x-8\times 6y=-8\left(-10\right),8\left(-8\right)x+8\left(-5\right)y=8\times 15
8x మరియు -8xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -8తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 8తో గుణించండి.
-64x-48y=80,-64x-40y=120
సరళీకృతం చేయండి.
-64x+64x-48y+40y=80-120
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -64x-40y=120ని -64x-48y=80 నుండి వ్యవకలనం చేయండి.
-48y+40y=80-120
64xకు -64xని కూడండి. -64x మరియు 64x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-8y=80-120
40yకు -48yని కూడండి.
-8y=-40
-120కు 80ని కూడండి.
y=5
రెండు వైపులా -8తో భాగించండి.
-8x-5\times 5=15
-8x-5y=15లో yను 5 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-8x-25=15
-5 సార్లు 5ని గుణించండి.
-8x=40
సమీకరణం యొక్క రెండు వైపులా 25ని కూడండి.
x=-5
రెండు వైపులా -8తో భాగించండి.
x=-5,y=5
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}