మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2x-y=-3,4x-3y=3
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x-y=-3
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=y-3
సమీకరణం యొక్క రెండు వైపులా yని కూడండి.
x=\frac{1}{2}\left(y-3\right)
రెండు వైపులా 2తో భాగించండి.
x=\frac{1}{2}y-\frac{3}{2}
\frac{1}{2} సార్లు y-3ని గుణించండి.
4\left(\frac{1}{2}y-\frac{3}{2}\right)-3y=3
మరొక సమీకరణములో xను \frac{-3+y}{2} స్థానంలో ప్రతిక్షేపించండి, 4x-3y=3.
2y-6-3y=3
4 సార్లు \frac{-3+y}{2}ని గుణించండి.
-y-6=3
-3yకు 2yని కూడండి.
-y=9
సమీకరణం యొక్క రెండు వైపులా 6ని కూడండి.
y=-9
రెండు వైపులా -1తో భాగించండి.
x=\frac{1}{2}\left(-9\right)-\frac{3}{2}
x=\frac{1}{2}y-\frac{3}{2}లో yను -9 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-9-3}{2}
\frac{1}{2} సార్లు -9ని గుణించండి.
x=-6
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{9}{2}కు -\frac{3}{2}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-6,y=-9
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x-y=-3,4x-3y=3
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&-1\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\3\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&-1\\4&-3\end{matrix}\right))\left(\begin{matrix}2&-1\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&-3\end{matrix}\right))\left(\begin{matrix}-3\\3\end{matrix}\right)
\left(\begin{matrix}2&-1\\4&-3\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&-3\end{matrix}\right))\left(\begin{matrix}-3\\3\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\4&-3\end{matrix}\right))\left(\begin{matrix}-3\\3\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-\left(-4\right)}&-\frac{-1}{2\left(-3\right)-\left(-4\right)}\\-\frac{4}{2\left(-3\right)-\left(-4\right)}&\frac{2}{2\left(-3\right)-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-3\\3\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&-\frac{1}{2}\\2&-1\end{matrix}\right)\left(\begin{matrix}-3\\3\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\left(-3\right)-\frac{1}{2}\times 3\\2\left(-3\right)-3\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-9\end{matrix}\right)
అంకగణితము చేయండి.
x=-6,y=-9
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x-y=-3,4x-3y=3
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
4\times 2x+4\left(-1\right)y=4\left(-3\right),2\times 4x+2\left(-3\right)y=2\times 3
2x మరియు 4xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 4తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 2తో గుణించండి.
8x-4y=-12,8x-6y=6
సరళీకృతం చేయండి.
8x-8x-4y+6y=-12-6
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 8x-6y=6ని 8x-4y=-12 నుండి వ్యవకలనం చేయండి.
-4y+6y=-12-6
-8xకు 8xని కూడండి. 8x మరియు -8x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
2y=-12-6
6yకు -4yని కూడండి.
2y=-18
-6కు -12ని కూడండి.
y=-9
రెండు వైపులా 2తో భాగించండి.
4x-3\left(-9\right)=3
4x-3y=3లో yను -9 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
4x+27=3
-3 సార్లు -9ని గుణించండి.
4x=-24
సమీకరణము యొక్క రెండు భాగాల నుండి 27ని వ్యవకలనం చేయండి.
x=-6
రెండు వైపులా 4తో భాగించండి.
x=-6,y=-9
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.