మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2x+3y=10
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు వైపులా 10ని జోడించండి. సున్నాతో ఏ సంఖ్యను కూడినా అదే సంఖ్య వస్తుంది.
4x-3y=20
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
2x+3y=10,4x-3y=20
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x+3y=10
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=-3y+10
సమీకరణము యొక్క రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
x=\frac{1}{2}\left(-3y+10\right)
రెండు వైపులా 2తో భాగించండి.
x=-\frac{3}{2}y+5
\frac{1}{2} సార్లు -3y+10ని గుణించండి.
4\left(-\frac{3}{2}y+5\right)-3y=20
మరొక సమీకరణములో xను -\frac{3y}{2}+5 స్థానంలో ప్రతిక్షేపించండి, 4x-3y=20.
-6y+20-3y=20
4 సార్లు -\frac{3y}{2}+5ని గుణించండి.
-9y+20=20
-3yకు -6yని కూడండి.
-9y=0
సమీకరణము యొక్క రెండు భాగాల నుండి 20ని వ్యవకలనం చేయండి.
y=0
రెండు వైపులా -9తో భాగించండి.
x=5
x=-\frac{3}{2}y+5లో yను 0 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=5,y=0
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x+3y=10
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు వైపులా 10ని జోడించండి. సున్నాతో ఏ సంఖ్యను కూడినా అదే సంఖ్య వస్తుంది.
4x-3y=20
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
2x+3y=10,4x-3y=20
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&3\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\20\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}2&3\\4&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
\left(\begin{matrix}2&3\\4&-3\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\4&-3\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{2\left(-3\right)-3\times 4}&-\frac{3}{2\left(-3\right)-3\times 4}\\-\frac{4}{2\left(-3\right)-3\times 4}&\frac{2}{2\left(-3\right)-3\times 4}\end{matrix}\right)\left(\begin{matrix}10\\20\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{2}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}10\\20\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 10+\frac{1}{6}\times 20\\\frac{2}{9}\times 10-\frac{1}{9}\times 20\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\0\end{matrix}\right)
అంకగణితము చేయండి.
x=5,y=0
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x+3y=10
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు వైపులా 10ని జోడించండి. సున్నాతో ఏ సంఖ్యను కూడినా అదే సంఖ్య వస్తుంది.
4x-3y=20
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
2x+3y=10,4x-3y=20
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
4\times 2x+4\times 3y=4\times 10,2\times 4x+2\left(-3\right)y=2\times 20
2x మరియు 4xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 4తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 2తో గుణించండి.
8x+12y=40,8x-6y=40
సరళీకృతం చేయండి.
8x-8x+12y+6y=40-40
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 8x-6y=40ని 8x+12y=40 నుండి వ్యవకలనం చేయండి.
12y+6y=40-40
-8xకు 8xని కూడండి. 8x మరియు -8x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
18y=40-40
6yకు 12yని కూడండి.
18y=0
-40కు 40ని కూడండి.
y=0
రెండు వైపులా 18తో భాగించండి.
4x=20
4x-3y=20లో yను 0 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=5
రెండు వైపులా 4తో భాగించండి.
x=5,y=0
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.