మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2x+3y=-10,x+4y=5
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x+3y=-10
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=-3y-10
సమీకరణము యొక్క రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
x=\frac{1}{2}\left(-3y-10\right)
రెండు వైపులా 2తో భాగించండి.
x=-\frac{3}{2}y-5
\frac{1}{2} సార్లు -3y-10ని గుణించండి.
-\frac{3}{2}y-5+4y=5
మరొక సమీకరణములో xను -\frac{3y}{2}-5 స్థానంలో ప్రతిక్షేపించండి, x+4y=5.
\frac{5}{2}y-5=5
4yకు -\frac{3y}{2}ని కూడండి.
\frac{5}{2}y=10
సమీకరణం యొక్క రెండు వైపులా 5ని కూడండి.
y=4
సమీకరణము యొక్క రెండు వైపులా \frac{5}{2}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{3}{2}\times 4-5
x=-\frac{3}{2}y-5లో yను 4 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-6-5
-\frac{3}{2} సార్లు 4ని గుణించండి.
x=-11
-6కు -5ని కూడండి.
x=-11,y=4
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x+3y=-10,x+4y=5
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&3\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\5\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&3\\1&4\end{matrix}\right))\left(\begin{matrix}2&3\\1&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&4\end{matrix}\right))\left(\begin{matrix}-10\\5\end{matrix}\right)
\left(\begin{matrix}2&3\\1&4\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&4\end{matrix}\right))\left(\begin{matrix}-10\\5\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&4\end{matrix}\right))\left(\begin{matrix}-10\\5\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3}&-\frac{3}{2\times 4-3}\\-\frac{1}{2\times 4-3}&\frac{2}{2\times 4-3}\end{matrix}\right)\left(\begin{matrix}-10\\5\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}&-\frac{3}{5}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}-10\\5\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}\left(-10\right)-\frac{3}{5}\times 5\\-\frac{1}{5}\left(-10\right)+\frac{2}{5}\times 5\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-11\\4\end{matrix}\right)
అంకగణితము చేయండి.
x=-11,y=4
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x+3y=-10,x+4y=5
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2x+3y=-10,2x+2\times 4y=2\times 5
2x మరియు xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 1తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 2తో గుణించండి.
2x+3y=-10,2x+8y=10
సరళీకృతం చేయండి.
2x-2x+3y-8y=-10-10
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 2x+8y=10ని 2x+3y=-10 నుండి వ్యవకలనం చేయండి.
3y-8y=-10-10
-2xకు 2xని కూడండి. 2x మరియు -2x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-5y=-10-10
-8yకు 3yని కూడండి.
-5y=-20
-10కు -10ని కూడండి.
y=4
రెండు వైపులా -5తో భాగించండి.
x+4\times 4=5
x+4y=5లో yను 4 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x+16=5
4 సార్లు 4ని గుణించండి.
x=-11
సమీకరణము యొక్క రెండు భాగాల నుండి 16ని వ్యవకలనం చేయండి.
x=-11,y=4
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.