x, yని పరిష్కరించండి
x=0
y=5
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
-3x+4y=20,6x+3y=15
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
-3x+4y=20
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
-3x=-4y+20
సమీకరణము యొక్క రెండు భాగాల నుండి 4yని వ్యవకలనం చేయండి.
x=-\frac{1}{3}\left(-4y+20\right)
రెండు వైపులా -3తో భాగించండి.
x=\frac{4}{3}y-\frac{20}{3}
-\frac{1}{3} సార్లు -4y+20ని గుణించండి.
6\left(\frac{4}{3}y-\frac{20}{3}\right)+3y=15
మరొక సమీకరణములో xను \frac{-20+4y}{3} స్థానంలో ప్రతిక్షేపించండి, 6x+3y=15.
8y-40+3y=15
6 సార్లు \frac{-20+4y}{3}ని గుణించండి.
11y-40=15
3yకు 8yని కూడండి.
11y=55
సమీకరణం యొక్క రెండు వైపులా 40ని కూడండి.
y=5
రెండు వైపులా 11తో భాగించండి.
x=\frac{4}{3}\times 5-\frac{20}{3}
x=\frac{4}{3}y-\frac{20}{3}లో yను 5 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{20-20}{3}
\frac{4}{3} సార్లు 5ని గుణించండి.
x=0
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{20}{3}కు -\frac{20}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=0,y=5
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
-3x+4y=20,6x+3y=15
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}-3&4\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\15\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}-3&4\\6&3\end{matrix}\right))\left(\begin{matrix}-3&4\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&4\\6&3\end{matrix}\right))\left(\begin{matrix}20\\15\end{matrix}\right)
\left(\begin{matrix}-3&4\\6&3\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&4\\6&3\end{matrix}\right))\left(\begin{matrix}20\\15\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&4\\6&3\end{matrix}\right))\left(\begin{matrix}20\\15\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-3\times 3-4\times 6}&-\frac{4}{-3\times 3-4\times 6}\\-\frac{6}{-3\times 3-4\times 6}&-\frac{3}{-3\times 3-4\times 6}\end{matrix}\right)\left(\begin{matrix}20\\15\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{11}&\frac{4}{33}\\\frac{2}{11}&\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}20\\15\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{11}\times 20+\frac{4}{33}\times 15\\\frac{2}{11}\times 20+\frac{1}{11}\times 15\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\5\end{matrix}\right)
అంకగణితము చేయండి.
x=0,y=5
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
-3x+4y=20,6x+3y=15
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
6\left(-3\right)x+6\times 4y=6\times 20,-3\times 6x-3\times 3y=-3\times 15
-3x మరియు 6xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 6తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను -3తో గుణించండి.
-18x+24y=120,-18x-9y=-45
సరళీకృతం చేయండి.
-18x+18x+24y+9y=120+45
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -18x-9y=-45ని -18x+24y=120 నుండి వ్యవకలనం చేయండి.
24y+9y=120+45
18xకు -18xని కూడండి. -18x మరియు 18x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
33y=120+45
9yకు 24yని కూడండి.
33y=165
45కు 120ని కూడండి.
y=5
రెండు వైపులా 33తో భాగించండి.
6x+3\times 5=15
6x+3y=15లో yను 5 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
6x+15=15
3 సార్లు 5ని గుణించండి.
6x=0
సమీకరణము యొక్క రెండు భాగాల నుండి 15ని వ్యవకలనం చేయండి.
x=0
రెండు వైపులా 6తో భాగించండి.
x=0,y=5
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}