\left| \begin{array} { c c c } { 4 } & { 4 } & { - 2 } \\ { 2 } & { 8 } & { - 4 } \\ { 1 } & { 1 } & { 1 } \end{array} \right| =
మూల్యాంకనం చేయండి
36
లబ్ధమూలము
2^{2}\times 3^{2}
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
det(\left(\begin{matrix}4&4&-2\\2&8&-4\\1&1&1\end{matrix}\right))
కర్ణముల విధానాన్ని ఉపయోగించి మాత్రిక యొక్క నిర్ణాయకమును కనుగొనండి.
\left(\begin{matrix}4&4&-2&4&4\\2&8&-4&2&8\\1&1&1&1&1\end{matrix}\right)
మొదటి రెండు నిలువు వరుసలను నాలుగు మరియు ఐదు నిలువు వరుసల వలె పునరావృతం చేయడం ద్వారా వాస్తవ మాత్రికను విస్తరించండి.
4\times 8+4\left(-4\right)-2\times 2=12
ఎగువ ఎడమ విలువతో ప్రారంభించి, దిగువ ఐమూలరేఖల వరకు గుణించి, ఫలితంగా వచ్చిన గుణకారలబ్ధములను కూడండి.
8\left(-2\right)-4\times 4+2\times 4=-24
దిగువ ఎడమ విలువతో ప్రారంభించి, ఎగువ ఐమూలరేఖల వరకు గుణించి, ఫలితంగా వచ్చిన గుణకారలబ్ధములను కూడండి.
12-\left(-24\right)
దిగువవైపు ఐమూలరేఖ గుణకారలబ్ధముల సంకలనం నుండి ఎగువవైపు ఐమూలరేఖ గుణకారలబ్ధముల సంకలనాన్ని వ్యవకలనం చేయండి.
36
-24ని 12 నుండి వ్యవకలనం చేయండి.
det(\left(\begin{matrix}4&4&-2\\2&8&-4\\1&1&1\end{matrix}\right))
పీఠములతో వ్యాకోచము పద్ధతిని ఉపయోగించి మాత్రిక యొక్క నిర్ణాయకమును కనుగొనండి (సహకారణాంకముల ద్వారా వ్యాకోచము అని కూడా అంటారు).
4det(\left(\begin{matrix}8&-4\\1&1\end{matrix}\right))-4det(\left(\begin{matrix}2&-4\\1&1\end{matrix}\right))-2det(\left(\begin{matrix}2&8\\1&1\end{matrix}\right))
మైనర్లతో పొడిగించడం కోసం, మొదటి అడ్డువరుసలో ఉన్న ప్రతి మూలాన్ని దాని మైనర్తో గుణించండి, ఇది ఆ మూలకాన్ని కలిగి ఉన్న అడ్డువరుస మరియు నిలువువరుసను తొలగించడం ద్వారా ఏర్పడిన 2\times 2 మాత్రిక యొక్క నిర్ణాయకము, ఆపై ప్రతి మూలకం యొక్క స్థాన గుర్తుతో గుణించండి.
4\left(8-\left(-4\right)\right)-4\left(2-\left(-4\right)\right)-2\left(2-8\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు, డిటర్మినెంట్ ad-bc.
4\times 12-4\times 6-2\left(-6\right)
సరళీకృతం చేయండి.
36
అంతిమ ఫలితాన్ని కనుగొనడం కోసం విలువలను కూడండి.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}