మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

\sqrt{3}x-3y=\sqrt{3},x+\sqrt{3}y=1
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
\sqrt{3}x-3y=\sqrt{3}
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
\sqrt{3}x=3y+\sqrt{3}
సమీకరణం యొక్క రెండు వైపులా 3yని కూడండి.
x=\frac{\sqrt{3}}{3}\left(3y+\sqrt{3}\right)
రెండు వైపులా \sqrt{3}తో భాగించండి.
x=\sqrt{3}y+1
\frac{\sqrt{3}}{3} సార్లు 3y+\sqrt{3}ని గుణించండి.
\sqrt{3}y+1+\sqrt{3}y=1
మరొక సమీకరణములో xను \sqrt{3}y+1 స్థానంలో ప్రతిక్షేపించండి, x+\sqrt{3}y=1.
2\sqrt{3}y+1=1
\sqrt{3}yకు \sqrt{3}yని కూడండి.
2\sqrt{3}y=0
సమీకరణము యొక్క రెండు భాగాల నుండి 1ని వ్యవకలనం చేయండి.
y=0
రెండు వైపులా 2\sqrt{3}తో భాగించండి.
x=1
x=\sqrt{3}y+1లో yను 0 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=1,y=0
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
\sqrt{3}x-3y=\sqrt{3},x+\sqrt{3}y=1
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
\sqrt{3}x-3y=\sqrt{3},\sqrt{3}x+\sqrt{3}\sqrt{3}y=\sqrt{3}
\sqrt{3}x మరియు xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 1తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను \sqrt{3}తో గుణించండి.
\sqrt{3}x-3y=\sqrt{3},\sqrt{3}x+3y=\sqrt{3}
సరళీకృతం చేయండి.
\sqrt{3}x+\left(-\sqrt{3}\right)x-3y-3y=\sqrt{3}-\sqrt{3}
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా \sqrt{3}x+3y=\sqrt{3}ని \sqrt{3}x-3y=\sqrt{3} నుండి వ్యవకలనం చేయండి.
-3y-3y=\sqrt{3}-\sqrt{3}
-\sqrt{3}xకు \sqrt{3}xని కూడండి. \sqrt{3}x మరియు -\sqrt{3}x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-6y=\sqrt{3}-\sqrt{3}
-3yకు -3yని కూడండి.
-6y=0
-\sqrt{3}కు \sqrt{3}ని కూడండి.
y=0
రెండు వైపులా -6తో భాగించండి.
x=1
x+\sqrt{3}y=1లో yను 0 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=1,y=0
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.