\left\{ \begin{array}{l}{ 6 x + y = 4 }\\{ x - 4 y = 19 }\end{array} \right.
x, yని పరిష్కరించండి
x = \frac{7}{5} = 1\frac{2}{5} = 1.4
y = -\frac{22}{5} = -4\frac{2}{5} = -4.4
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
6x+y=4,x-4y=19
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
6x+y=4
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
6x=-y+4
సమీకరణము యొక్క రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x=\frac{1}{6}\left(-y+4\right)
రెండు వైపులా 6తో భాగించండి.
x=-\frac{1}{6}y+\frac{2}{3}
\frac{1}{6} సార్లు -y+4ని గుణించండి.
-\frac{1}{6}y+\frac{2}{3}-4y=19
మరొక సమీకరణములో xను -\frac{y}{6}+\frac{2}{3} స్థానంలో ప్రతిక్షేపించండి, x-4y=19.
-\frac{25}{6}y+\frac{2}{3}=19
-4yకు -\frac{y}{6}ని కూడండి.
-\frac{25}{6}y=\frac{55}{3}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{2}{3}ని వ్యవకలనం చేయండి.
y=-\frac{22}{5}
సమీకరణము యొక్క రెండు వైపులా -\frac{25}{6}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{1}{6}\left(-\frac{22}{5}\right)+\frac{2}{3}
x=-\frac{1}{6}y+\frac{2}{3}లో yను -\frac{22}{5} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{11}{15}+\frac{2}{3}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{1}{6} సార్లు -\frac{22}{5}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{7}{5}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{11}{15}కు \frac{2}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{7}{5},y=-\frac{22}{5}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
6x+y=4,x-4y=19
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}6&1\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\19\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}6&1\\1&-4\end{matrix}\right))\left(\begin{matrix}6&1\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&1\\1&-4\end{matrix}\right))\left(\begin{matrix}4\\19\end{matrix}\right)
\left(\begin{matrix}6&1\\1&-4\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&1\\1&-4\end{matrix}\right))\left(\begin{matrix}4\\19\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&1\\1&-4\end{matrix}\right))\left(\begin{matrix}4\\19\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{6\left(-4\right)-1}&-\frac{1}{6\left(-4\right)-1}\\-\frac{1}{6\left(-4\right)-1}&\frac{6}{6\left(-4\right)-1}\end{matrix}\right)\left(\begin{matrix}4\\19\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}&\frac{1}{25}\\\frac{1}{25}&-\frac{6}{25}\end{matrix}\right)\left(\begin{matrix}4\\19\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}\times 4+\frac{1}{25}\times 19\\\frac{1}{25}\times 4-\frac{6}{25}\times 19\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5}\\-\frac{22}{5}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{7}{5},y=-\frac{22}{5}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
6x+y=4,x-4y=19
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
6x+y=4,6x+6\left(-4\right)y=6\times 19
6x మరియు xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 1తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 6తో గుణించండి.
6x+y=4,6x-24y=114
సరళీకృతం చేయండి.
6x-6x+y+24y=4-114
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 6x-24y=114ని 6x+y=4 నుండి వ్యవకలనం చేయండి.
y+24y=4-114
-6xకు 6xని కూడండి. 6x మరియు -6x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
25y=4-114
24yకు yని కూడండి.
25y=-110
-114కు 4ని కూడండి.
y=-\frac{22}{5}
రెండు వైపులా 25తో భాగించండి.
x-4\left(-\frac{22}{5}\right)=19
x-4y=19లో yను -\frac{22}{5} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x+\frac{88}{5}=19
-4 సార్లు -\frac{22}{5}ని గుణించండి.
x=\frac{7}{5}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{88}{5}ని వ్యవకలనం చేయండి.
x=\frac{7}{5},y=-\frac{22}{5}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}