\left\{ \begin{array}{l}{ 2 x - y = 1 }\\{ x + 2 y = 8 }\end{array} \right.
x, yని పరిష్కరించండి
x=2
y=3
గ్రాఫ్
క్విజ్
Simultaneous Equation
\left\{ \begin{array}{l}{ 2 x - y = 1 }\\{ x + 2 y = 8 }\end{array} \right.
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
2x-y=1,x+2y=8
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x-y=1
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=y+1
సమీకరణం యొక్క రెండు వైపులా yని కూడండి.
x=\frac{1}{2}\left(y+1\right)
రెండు వైపులా 2తో భాగించండి.
x=\frac{1}{2}y+\frac{1}{2}
\frac{1}{2} సార్లు y+1ని గుణించండి.
\frac{1}{2}y+\frac{1}{2}+2y=8
మరొక సమీకరణములో xను \frac{1+y}{2} స్థానంలో ప్రతిక్షేపించండి, x+2y=8.
\frac{5}{2}y+\frac{1}{2}=8
2yకు \frac{y}{2}ని కూడండి.
\frac{5}{2}y=\frac{15}{2}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{1}{2}ని వ్యవకలనం చేయండి.
y=3
సమీకరణము యొక్క రెండు వైపులా \frac{5}{2}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{1}{2}\times 3+\frac{1}{2}
x=\frac{1}{2}y+\frac{1}{2}లో yను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{3+1}{2}
\frac{1}{2} సార్లు 3ని గుణించండి.
x=2
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{3}{2}కు \frac{1}{2}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=2,y=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x-y=1,x+2y=8
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&-1\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\8\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&-1\\1&2\end{matrix}\right))\left(\begin{matrix}2&-1\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&2\end{matrix}\right))\left(\begin{matrix}1\\8\end{matrix}\right)
\left(\begin{matrix}2&-1\\1&2\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&2\end{matrix}\right))\left(\begin{matrix}1\\8\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\1&2\end{matrix}\right))\left(\begin{matrix}1\\8\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-1\right)}&-\frac{-1}{2\times 2-\left(-1\right)}\\-\frac{1}{2\times 2-\left(-1\right)}&\frac{2}{2\times 2-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}1\\8\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{1}{5}\\-\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}1\\8\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}+\frac{1}{5}\times 8\\-\frac{1}{5}+\frac{2}{5}\times 8\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
అంకగణితము చేయండి.
x=2,y=3
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x-y=1,x+2y=8
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2x-y=1,2x+2\times 2y=2\times 8
2x మరియు xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 1తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 2తో గుణించండి.
2x-y=1,2x+4y=16
సరళీకృతం చేయండి.
2x-2x-y-4y=1-16
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 2x+4y=16ని 2x-y=1 నుండి వ్యవకలనం చేయండి.
-y-4y=1-16
-2xకు 2xని కూడండి. 2x మరియు -2x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-5y=1-16
-4yకు -yని కూడండి.
-5y=-15
-16కు 1ని కూడండి.
y=3
రెండు వైపులా -5తో భాగించండి.
x+2\times 3=8
x+2y=8లో yను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x+6=8
2 సార్లు 3ని గుణించండి.
x=2
సమీకరణము యొక్క రెండు భాగాల నుండి 6ని వ్యవకలనం చేయండి.
x=2,y=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}