మెయిన్ కంటెంట్ కు వెళ్లండి
y, xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

y-4x=5
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 4xని వ్యవకలనం చేయండి.
y-8x=9
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 8xని వ్యవకలనం చేయండి.
y-4x=5,y-8x=9
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
y-4x=5
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న yని వేరు చేయడం ద్వారా yని పరిష్కరించండి.
y=4x+5
సమీకరణం యొక్క రెండు వైపులా 4xని కూడండి.
4x+5-8x=9
మరొక సమీకరణములో yను 4x+5 స్థానంలో ప్రతిక్షేపించండి, y-8x=9.
-4x+5=9
-8xకు 4xని కూడండి.
-4x=4
సమీకరణము యొక్క రెండు భాగాల నుండి 5ని వ్యవకలనం చేయండి.
x=-1
రెండు వైపులా -4తో భాగించండి.
y=4\left(-1\right)+5
y=4x+5లో xను -1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y=-4+5
4 సార్లు -1ని గుణించండి.
y=1
-4కు 5ని కూడండి.
y=1,x=-1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
y-4x=5
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 4xని వ్యవకలనం చేయండి.
y-8x=9
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 8xని వ్యవకలనం చేయండి.
y-4x=5,y-8x=9
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&-4\\1&-8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}5\\9\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&-4\\1&-8\end{matrix}\right))\left(\begin{matrix}1&-4\\1&-8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-8\end{matrix}\right))\left(\begin{matrix}5\\9\end{matrix}\right)
\left(\begin{matrix}1&-4\\1&-8\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-8\end{matrix}\right))\left(\begin{matrix}5\\9\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-8\end{matrix}\right))\left(\begin{matrix}5\\9\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{-8-\left(-4\right)}&-\frac{-4}{-8-\left(-4\right)}\\-\frac{1}{-8-\left(-4\right)}&\frac{1}{-8-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}5\\9\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2&-1\\\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}5\\9\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\times 5-9\\\frac{1}{4}\times 5-\frac{1}{4}\times 9\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\-1\end{matrix}\right)
అంకగణితము చేయండి.
y=1,x=-1
y మరియు x మాత్రిక మూలకాలను విస్తరించండి.
y-4x=5
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 4xని వ్యవకలనం చేయండి.
y-8x=9
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 8xని వ్యవకలనం చేయండి.
y-4x=5,y-8x=9
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
y-y-4x+8x=5-9
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా y-8x=9ని y-4x=5 నుండి వ్యవకలనం చేయండి.
-4x+8x=5-9
-yకు yని కూడండి. y మరియు -y విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
4x=5-9
8xకు -4xని కూడండి.
4x=-4
-9కు 5ని కూడండి.
x=-1
రెండు వైపులా 4తో భాగించండి.
y-8\left(-1\right)=9
y-8x=9లో xను -1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y+8=9
-8 సార్లు -1ని గుణించండి.
y=1
సమీకరణము యొక్క రెండు భాగాల నుండి 8ని వ్యవకలనం చేయండి.
y=1,x=-1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.