మెయిన్ కంటెంట్ కు వెళ్లండి
y, xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

y+x=2
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు వైపులా xని జోడించండి.
y-3x=-4
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 3xని వ్యవకలనం చేయండి.
y+x=2,y-3x=-4
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
y+x=2
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న yని వేరు చేయడం ద్వారా yని పరిష్కరించండి.
y=-x+2
సమీకరణము యొక్క రెండు భాగాల నుండి xని వ్యవకలనం చేయండి.
-x+2-3x=-4
మరొక సమీకరణములో yను -x+2 స్థానంలో ప్రతిక్షేపించండి, y-3x=-4.
-4x+2=-4
-3xకు -xని కూడండి.
-4x=-6
సమీకరణము యొక్క రెండు భాగాల నుండి 2ని వ్యవకలనం చేయండి.
x=\frac{3}{2}
రెండు వైపులా -4తో భాగించండి.
y=-\frac{3}{2}+2
y=-x+2లో xను \frac{3}{2} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y=\frac{1}{2}
-\frac{3}{2}కు 2ని కూడండి.
y=\frac{1}{2},x=\frac{3}{2}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
y+x=2
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు వైపులా xని జోడించండి.
y-3x=-4
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 3xని వ్యవకలనం చేయండి.
y+x=2,y-3x=-4
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&1\\1&-3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&1\\1&-3\end{matrix}\right))\left(\begin{matrix}1&1\\1&-3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-3\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
\left(\begin{matrix}1&1\\1&-3\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-3\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-3\end{matrix}\right))\left(\begin{matrix}2\\-4\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-1}&-\frac{1}{-3-1}\\-\frac{1}{-3-1}&\frac{1}{-3-1}\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&\frac{1}{4}\\\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}2\\-4\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\times 2+\frac{1}{4}\left(-4\right)\\\frac{1}{4}\times 2-\frac{1}{4}\left(-4\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\\frac{3}{2}\end{matrix}\right)
అంకగణితము చేయండి.
y=\frac{1}{2},x=\frac{3}{2}
y మరియు x మాత్రిక మూలకాలను విస్తరించండి.
y+x=2
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు వైపులా xని జోడించండి.
y-3x=-4
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 3xని వ్యవకలనం చేయండి.
y+x=2,y-3x=-4
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
y-y+x+3x=2+4
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా y-3x=-4ని y+x=2 నుండి వ్యవకలనం చేయండి.
x+3x=2+4
-yకు yని కూడండి. y మరియు -y విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
4x=2+4
3xకు xని కూడండి.
4x=6
4కు 2ని కూడండి.
x=\frac{3}{2}
రెండు వైపులా 4తో భాగించండి.
y-3\times \frac{3}{2}=-4
y-3x=-4లో xను \frac{3}{2} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y-\frac{9}{2}=-4
-3 సార్లు \frac{3}{2}ని గుణించండి.
y=\frac{1}{2}
సమీకరణం యొక్క రెండు వైపులా \frac{9}{2}ని కూడండి.
y=\frac{1}{2},x=\frac{3}{2}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.