\left\{ \begin{array} { l } { y = - \frac { 4 } { 6 } x - 5 } \\ { 8 x + 5 y = - 45 } \end{array} \right.
y, xని పరిష్కరించండి
x = -\frac{30}{7} = -4\frac{2}{7} \approx -4.285714286
y = -\frac{15}{7} = -2\frac{1}{7} \approx -2.142857143
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
y=-\frac{2}{3}x-5
మొదటి సమీకరణాన్ని పరిగణించండి. 2ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{4}{6} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
5\left(-\frac{2}{3}x-5\right)+8x=-45
మరొక సమీకరణములో yను -\frac{2x}{3}-5 స్థానంలో ప్రతిక్షేపించండి, 5y+8x=-45.
-\frac{10}{3}x-25+8x=-45
5 సార్లు -\frac{2x}{3}-5ని గుణించండి.
\frac{14}{3}x-25=-45
8xకు -\frac{10x}{3}ని కూడండి.
\frac{14}{3}x=-20
సమీకరణం యొక్క రెండు వైపులా 25ని కూడండి.
x=-\frac{30}{7}
సమీకరణము యొక్క రెండు వైపులా \frac{14}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
y=-\frac{2}{3}\left(-\frac{30}{7}\right)-5
y=-\frac{2}{3}x-5లో xను -\frac{30}{7} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y=\frac{20}{7}-5
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{2}{3} సార్లు -\frac{30}{7}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
y=-\frac{15}{7}
\frac{20}{7}కు -5ని కూడండి.
y=-\frac{15}{7},x=-\frac{30}{7}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
y=-\frac{2}{3}x-5
మొదటి సమీకరణాన్ని పరిగణించండి. 2ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{4}{6} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
y+\frac{2}{3}x=-5
రెండు వైపులా \frac{2}{3}xని జోడించండి.
y+\frac{2}{3}x=-5,5y+8x=-45
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&\frac{2}{3}\\5&8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-5\\-45\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&\frac{2}{3}\\5&8\end{matrix}\right))\left(\begin{matrix}1&\frac{2}{3}\\5&8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{2}{3}\\5&8\end{matrix}\right))\left(\begin{matrix}-5\\-45\end{matrix}\right)
\left(\begin{matrix}1&\frac{2}{3}\\5&8\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{2}{3}\\5&8\end{matrix}\right))\left(\begin{matrix}-5\\-45\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{2}{3}\\5&8\end{matrix}\right))\left(\begin{matrix}-5\\-45\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{8}{8-\frac{2}{3}\times 5}&-\frac{\frac{2}{3}}{8-\frac{2}{3}\times 5}\\-\frac{5}{8-\frac{2}{3}\times 5}&\frac{1}{8-\frac{2}{3}\times 5}\end{matrix}\right)\left(\begin{matrix}-5\\-45\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{12}{7}&-\frac{1}{7}\\-\frac{15}{14}&\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}-5\\-45\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{12}{7}\left(-5\right)-\frac{1}{7}\left(-45\right)\\-\frac{15}{14}\left(-5\right)+\frac{3}{14}\left(-45\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{7}\\-\frac{30}{7}\end{matrix}\right)
అంకగణితము చేయండి.
y=-\frac{15}{7},x=-\frac{30}{7}
y మరియు x మాత్రిక మూలకాలను విస్తరించండి.
y=-\frac{2}{3}x-5
మొదటి సమీకరణాన్ని పరిగణించండి. 2ని సంగ్రహించడం మరియు తీసివేయడం కోసం \frac{4}{6} యొక్క భిన్నమును అత్యంత తక్కువ విలువలకు తగ్గించండి.
y+\frac{2}{3}x=-5
రెండు వైపులా \frac{2}{3}xని జోడించండి.
y+\frac{2}{3}x=-5,5y+8x=-45
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
5y+5\times \frac{2}{3}x=5\left(-5\right),5y+8x=-45
y మరియు 5yని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 5తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 1తో గుణించండి.
5y+\frac{10}{3}x=-25,5y+8x=-45
సరళీకృతం చేయండి.
5y-5y+\frac{10}{3}x-8x=-25+45
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 5y+8x=-45ని 5y+\frac{10}{3}x=-25 నుండి వ్యవకలనం చేయండి.
\frac{10}{3}x-8x=-25+45
-5yకు 5yని కూడండి. 5y మరియు -5y విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-\frac{14}{3}x=-25+45
-8xకు \frac{10x}{3}ని కూడండి.
-\frac{14}{3}x=20
45కు -25ని కూడండి.
x=-\frac{30}{7}
సమీకరణము యొక్క రెండు వైపులా -\frac{14}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
5y+8\left(-\frac{30}{7}\right)=-45
5y+8x=-45లో xను -\frac{30}{7} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
5y-\frac{240}{7}=-45
8 సార్లు -\frac{30}{7}ని గుణించండి.
5y=-\frac{75}{7}
సమీకరణం యొక్క రెండు వైపులా \frac{240}{7}ని కూడండి.
y=-\frac{15}{7}
రెండు వైపులా 5తో భాగించండి.
y=-\frac{15}{7},x=-\frac{30}{7}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}