మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x-4y=1,2x+y=16
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
x-4y=1
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
x=4y+1
సమీకరణం యొక్క రెండు వైపులా 4yని కూడండి.
2\left(4y+1\right)+y=16
మరొక సమీకరణములో xను 4y+1 స్థానంలో ప్రతిక్షేపించండి, 2x+y=16.
8y+2+y=16
2 సార్లు 4y+1ని గుణించండి.
9y+2=16
yకు 8yని కూడండి.
9y=14
సమీకరణము యొక్క రెండు భాగాల నుండి 2ని వ్యవకలనం చేయండి.
y=\frac{14}{9}
రెండు వైపులా 9తో భాగించండి.
x=4\times \frac{14}{9}+1
x=4y+1లో yను \frac{14}{9} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{56}{9}+1
4 సార్లు \frac{14}{9}ని గుణించండి.
x=\frac{65}{9}
\frac{56}{9}కు 1ని కూడండి.
x=\frac{65}{9},y=\frac{14}{9}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
x-4y=1,2x+y=16
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&-4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\16\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&-4\\2&1\end{matrix}\right))\left(\begin{matrix}1&-4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\2&1\end{matrix}\right))\left(\begin{matrix}1\\16\end{matrix}\right)
\left(\begin{matrix}1&-4\\2&1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\2&1\end{matrix}\right))\left(\begin{matrix}1\\16\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\2&1\end{matrix}\right))\left(\begin{matrix}1\\16\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-4\times 2\right)}&-\frac{-4}{1-\left(-4\times 2\right)}\\-\frac{2}{1-\left(-4\times 2\right)}&\frac{1}{1-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}1\\16\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&\frac{4}{9}\\-\frac{2}{9}&\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}1\\16\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}+\frac{4}{9}\times 16\\-\frac{2}{9}+\frac{1}{9}\times 16\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{65}{9}\\\frac{14}{9}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{65}{9},y=\frac{14}{9}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
x-4y=1,2x+y=16
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2x+2\left(-4\right)y=2,2x+y=16
x మరియు 2xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 2తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 1తో గుణించండి.
2x-8y=2,2x+y=16
సరళీకృతం చేయండి.
2x-2x-8y-y=2-16
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 2x+y=16ని 2x-8y=2 నుండి వ్యవకలనం చేయండి.
-8y-y=2-16
-2xకు 2xని కూడండి. 2x మరియు -2x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-9y=2-16
-yకు -8yని కూడండి.
-9y=-14
-16కు 2ని కూడండి.
y=\frac{14}{9}
రెండు వైపులా -9తో భాగించండి.
2x+\frac{14}{9}=16
2x+y=16లో yను \frac{14}{9} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
2x=\frac{130}{9}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{14}{9}ని వ్యవకలనం చేయండి.
x=\frac{65}{9}
రెండు వైపులా 2తో భాగించండి.
x=\frac{65}{9},y=\frac{14}{9}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.