మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x-3y=4,5x+3y=-1
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
x-3y=4
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
x=3y+4
సమీకరణం యొక్క రెండు వైపులా 3yని కూడండి.
5\left(3y+4\right)+3y=-1
మరొక సమీకరణములో xను 3y+4 స్థానంలో ప్రతిక్షేపించండి, 5x+3y=-1.
15y+20+3y=-1
5 సార్లు 3y+4ని గుణించండి.
18y+20=-1
3yకు 15yని కూడండి.
18y=-21
సమీకరణము యొక్క రెండు భాగాల నుండి 20ని వ్యవకలనం చేయండి.
y=-\frac{7}{6}
రెండు వైపులా 18తో భాగించండి.
x=3\left(-\frac{7}{6}\right)+4
x=3y+4లో yను -\frac{7}{6} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-\frac{7}{2}+4
3 సార్లు -\frac{7}{6}ని గుణించండి.
x=\frac{1}{2}
-\frac{7}{2}కు 4ని కూడండి.
x=\frac{1}{2},y=-\frac{7}{6}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
x-3y=4,5x+3y=-1
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&-3\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-1\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&-3\\5&3\end{matrix}\right))\left(\begin{matrix}1&-3\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\5&3\end{matrix}\right))\left(\begin{matrix}4\\-1\end{matrix}\right)
\left(\begin{matrix}1&-3\\5&3\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\5&3\end{matrix}\right))\left(\begin{matrix}4\\-1\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\5&3\end{matrix}\right))\left(\begin{matrix}4\\-1\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-3\times 5\right)}&-\frac{-3}{3-\left(-3\times 5\right)}\\-\frac{5}{3-\left(-3\times 5\right)}&\frac{1}{3-\left(-3\times 5\right)}\end{matrix}\right)\left(\begin{matrix}4\\-1\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\-\frac{5}{18}&\frac{1}{18}\end{matrix}\right)\left(\begin{matrix}4\\-1\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 4+\frac{1}{6}\left(-1\right)\\-\frac{5}{18}\times 4+\frac{1}{18}\left(-1\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\-\frac{7}{6}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{1}{2},y=-\frac{7}{6}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
x-3y=4,5x+3y=-1
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
5x+5\left(-3\right)y=5\times 4,5x+3y=-1
x మరియు 5xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 5తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 1తో గుణించండి.
5x-15y=20,5x+3y=-1
సరళీకృతం చేయండి.
5x-5x-15y-3y=20+1
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 5x+3y=-1ని 5x-15y=20 నుండి వ్యవకలనం చేయండి.
-15y-3y=20+1
-5xకు 5xని కూడండి. 5x మరియు -5x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-18y=20+1
-3yకు -15yని కూడండి.
-18y=21
1కు 20ని కూడండి.
y=-\frac{7}{6}
రెండు వైపులా -18తో భాగించండి.
5x+3\left(-\frac{7}{6}\right)=-1
5x+3y=-1లో yను -\frac{7}{6} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
5x-\frac{7}{2}=-1
3 సార్లు -\frac{7}{6}ని గుణించండి.
5x=\frac{5}{2}
సమీకరణం యొక్క రెండు వైపులా \frac{7}{2}ని కూడండి.
x=\frac{1}{2}
రెండు వైపులా 5తో భాగించండి.
x=\frac{1}{2},y=-\frac{7}{6}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.