\left\{ \begin{array} { l } { x - 3 = y } \\ { \frac { x } { 4 } - 1 = y } \end{array} \right.
x, yని పరిష్కరించండి
x = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
y=-\frac{1}{3}\approx -0.333333333
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
x-3-y=0
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x-y=3
రెండు వైపులా 3ని జోడించండి. సున్నాతో ఏ సంఖ్యను కూడినా అదే సంఖ్య వస్తుంది.
\frac{x}{4}-1-y=0
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
\frac{x}{4}-y=1
రెండు వైపులా 1ని జోడించండి. సున్నాతో ఏ సంఖ్యను కూడినా అదే సంఖ్య వస్తుంది.
x-4y=4
సమీకరణము యొక్క రెండు వైపులా 4తో గుణించండి.
x-y=3,x-4y=4
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
x-y=3
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
x=y+3
సమీకరణం యొక్క రెండు వైపులా yని కూడండి.
y+3-4y=4
మరొక సమీకరణములో xను y+3 స్థానంలో ప్రతిక్షేపించండి, x-4y=4.
-3y+3=4
-4yకు yని కూడండి.
-3y=1
సమీకరణము యొక్క రెండు భాగాల నుండి 3ని వ్యవకలనం చేయండి.
y=-\frac{1}{3}
రెండు వైపులా -3తో భాగించండి.
x=-\frac{1}{3}+3
x=y+3లో yను -\frac{1}{3} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{8}{3}
-\frac{1}{3}కు 3ని కూడండి.
x=\frac{8}{3},y=-\frac{1}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
x-3-y=0
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x-y=3
రెండు వైపులా 3ని జోడించండి. సున్నాతో ఏ సంఖ్యను కూడినా అదే సంఖ్య వస్తుంది.
\frac{x}{4}-1-y=0
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
\frac{x}{4}-y=1
రెండు వైపులా 1ని జోడించండి. సున్నాతో ఏ సంఖ్యను కూడినా అదే సంఖ్య వస్తుంది.
x-4y=4
సమీకరణము యొక్క రెండు వైపులా 4తో గుణించండి.
x-y=3,x-4y=4
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&-1\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&-1\\1&-4\end{matrix}\right))\left(\begin{matrix}1&-1\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-4\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
\left(\begin{matrix}1&-1\\1&-4\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-4\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-4\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-4-\left(-1\right)}&-\frac{-1}{-4-\left(-1\right)}\\-\frac{1}{-4-\left(-1\right)}&\frac{1}{-4-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}&-\frac{1}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}\times 3-\frac{1}{3}\times 4\\\frac{1}{3}\times 3-\frac{1}{3}\times 4\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\\-\frac{1}{3}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{8}{3},y=-\frac{1}{3}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
x-3-y=0
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x-y=3
రెండు వైపులా 3ని జోడించండి. సున్నాతో ఏ సంఖ్యను కూడినా అదే సంఖ్య వస్తుంది.
\frac{x}{4}-1-y=0
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
\frac{x}{4}-y=1
రెండు వైపులా 1ని జోడించండి. సున్నాతో ఏ సంఖ్యను కూడినా అదే సంఖ్య వస్తుంది.
x-4y=4
సమీకరణము యొక్క రెండు వైపులా 4తో గుణించండి.
x-y=3,x-4y=4
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
x-x-y+4y=3-4
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా x-4y=4ని x-y=3 నుండి వ్యవకలనం చేయండి.
-y+4y=3-4
-xకు xని కూడండి. x మరియు -x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
3y=3-4
4yకు -yని కూడండి.
3y=-1
-4కు 3ని కూడండి.
y=-\frac{1}{3}
రెండు వైపులా 3తో భాగించండి.
x-4\left(-\frac{1}{3}\right)=4
x-4y=4లో yను -\frac{1}{3} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x+\frac{4}{3}=4
-4 సార్లు -\frac{1}{3}ని గుణించండి.
x=\frac{8}{3}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{4}{3}ని వ్యవకలనం చేయండి.
x=\frac{8}{3},y=-\frac{1}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}