మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x+\frac{1}{4}y=5
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు వైపులా \frac{1}{4}yని జోడించండి.
x+\frac{1}{4}y=5,3x+2y=0
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
x+\frac{1}{4}y=5
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
x=-\frac{1}{4}y+5
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{y}{4}ని వ్యవకలనం చేయండి.
3\left(-\frac{1}{4}y+5\right)+2y=0
మరొక సమీకరణములో xను -\frac{y}{4}+5 స్థానంలో ప్రతిక్షేపించండి, 3x+2y=0.
-\frac{3}{4}y+15+2y=0
3 సార్లు -\frac{y}{4}+5ని గుణించండి.
\frac{5}{4}y+15=0
2yకు -\frac{3y}{4}ని కూడండి.
\frac{5}{4}y=-15
సమీకరణము యొక్క రెండు భాగాల నుండి 15ని వ్యవకలనం చేయండి.
y=-12
సమీకరణము యొక్క రెండు వైపులా \frac{5}{4}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{1}{4}\left(-12\right)+5
x=-\frac{1}{4}y+5లో yను -12 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=3+5
-\frac{1}{4} సార్లు -12ని గుణించండి.
x=8
3కు 5ని కూడండి.
x=8,y=-12
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
x+\frac{1}{4}y=5
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు వైపులా \frac{1}{4}yని జోడించండి.
x+\frac{1}{4}y=5,3x+2y=0
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&\frac{1}{4}\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\0\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&\frac{1}{4}\\3&2\end{matrix}\right))\left(\begin{matrix}1&\frac{1}{4}\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{1}{4}\\3&2\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
\left(\begin{matrix}1&\frac{1}{4}\\3&2\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{1}{4}\\3&2\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{1}{4}\\3&2\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\frac{1}{4}\times 3}&-\frac{\frac{1}{4}}{2-\frac{1}{4}\times 3}\\-\frac{3}{2-\frac{1}{4}\times 3}&\frac{1}{2-\frac{1}{4}\times 3}\end{matrix}\right)\left(\begin{matrix}5\\0\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{5}&-\frac{1}{5}\\-\frac{12}{5}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}5\\0\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{5}\times 5\\-\frac{12}{5}\times 5\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-12\end{matrix}\right)
అంకగణితము చేయండి.
x=8,y=-12
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
x+\frac{1}{4}y=5
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు వైపులా \frac{1}{4}yని జోడించండి.
x+\frac{1}{4}y=5,3x+2y=0
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
3x+3\times \frac{1}{4}y=3\times 5,3x+2y=0
x మరియు 3xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 3తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 1తో గుణించండి.
3x+\frac{3}{4}y=15,3x+2y=0
సరళీకృతం చేయండి.
3x-3x+\frac{3}{4}y-2y=15
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 3x+2y=0ని 3x+\frac{3}{4}y=15 నుండి వ్యవకలనం చేయండి.
\frac{3}{4}y-2y=15
-3xకు 3xని కూడండి. 3x మరియు -3x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-\frac{5}{4}y=15
-2yకు \frac{3y}{4}ని కూడండి.
y=-12
సమీకరణము యొక్క రెండు వైపులా -\frac{5}{4}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
3x+2\left(-12\right)=0
3x+2y=0లో yను -12 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
3x-24=0
2 సార్లు -12ని గుణించండి.
3x=24
సమీకరణం యొక్క రెండు వైపులా 24ని కూడండి.
x=8
రెండు వైపులా 3తో భాగించండి.
x=8,y=-12
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.