మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x+y=6,3x-y=-2
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
x+y=6
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
x=-y+6
సమీకరణము యొక్క రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
3\left(-y+6\right)-y=-2
మరొక సమీకరణములో xను -y+6 స్థానంలో ప్రతిక్షేపించండి, 3x-y=-2.
-3y+18-y=-2
3 సార్లు -y+6ని గుణించండి.
-4y+18=-2
-yకు -3yని కూడండి.
-4y=-20
సమీకరణము యొక్క రెండు భాగాల నుండి 18ని వ్యవకలనం చేయండి.
y=5
రెండు వైపులా -4తో భాగించండి.
x=-5+6
x=-y+6లో yను 5 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=1
-5కు 6ని కూడండి.
x=1,y=5
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
x+y=6,3x-y=-2
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-2\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&1\\3&-1\end{matrix}\right))\left(\begin{matrix}1&1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-1\end{matrix}\right))\left(\begin{matrix}6\\-2\end{matrix}\right)
\left(\begin{matrix}1&1\\3&-1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-1\end{matrix}\right))\left(\begin{matrix}6\\-2\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&-1\end{matrix}\right))\left(\begin{matrix}6\\-2\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-3}&-\frac{1}{-1-3}\\-\frac{3}{-1-3}&\frac{1}{-1-3}\end{matrix}\right)\left(\begin{matrix}6\\-2\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\\frac{3}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}6\\-2\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 6+\frac{1}{4}\left(-2\right)\\\frac{3}{4}\times 6-\frac{1}{4}\left(-2\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\5\end{matrix}\right)
అంకగణితము చేయండి.
x=1,y=5
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
x+y=6,3x-y=-2
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
3x+3y=3\times 6,3x-y=-2
x మరియు 3xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 3తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 1తో గుణించండి.
3x+3y=18,3x-y=-2
సరళీకృతం చేయండి.
3x-3x+3y+y=18+2
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 3x-y=-2ని 3x+3y=18 నుండి వ్యవకలనం చేయండి.
3y+y=18+2
-3xకు 3xని కూడండి. 3x మరియు -3x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
4y=18+2
yకు 3yని కూడండి.
4y=20
2కు 18ని కూడండి.
y=5
రెండు వైపులా 4తో భాగించండి.
3x-5=-2
3x-y=-2లో yను 5 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
3x=3
సమీకరణం యొక్క రెండు వైపులా 5ని కూడండి.
x=1
రెండు వైపులా 3తో భాగించండి.
x=1,y=5
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.