\left\{ \begin{array} { l } { x + y = 220 } \\ { \frac { 2 } { 5 } x = \frac { 3 } { 8 } y - 5 } \end{array} \right.
x, yని పరిష్కరించండి
x=100
y=120
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
\frac{2}{5}x-\frac{3}{8}y=-5
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి \frac{3}{8}yని వ్యవకలనం చేయండి.
x+y=220,\frac{2}{5}x-\frac{3}{8}y=-5
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
x+y=220
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
x=-y+220
సమీకరణము యొక్క రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
\frac{2}{5}\left(-y+220\right)-\frac{3}{8}y=-5
మరొక సమీకరణములో xను -y+220 స్థానంలో ప్రతిక్షేపించండి, \frac{2}{5}x-\frac{3}{8}y=-5.
-\frac{2}{5}y+88-\frac{3}{8}y=-5
\frac{2}{5} సార్లు -y+220ని గుణించండి.
-\frac{31}{40}y+88=-5
-\frac{3y}{8}కు -\frac{2y}{5}ని కూడండి.
-\frac{31}{40}y=-93
సమీకరణము యొక్క రెండు భాగాల నుండి 88ని వ్యవకలనం చేయండి.
y=120
సమీకరణము యొక్క రెండు వైపులా -\frac{31}{40}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-120+220
x=-y+220లో yను 120 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=100
-120కు 220ని కూడండి.
x=100,y=120
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
\frac{2}{5}x-\frac{3}{8}y=-5
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి \frac{3}{8}yని వ్యవకలనం చేయండి.
x+y=220,\frac{2}{5}x-\frac{3}{8}y=-5
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&1\\\frac{2}{5}&-\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}220\\-5\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&1\\\frac{2}{5}&-\frac{3}{8}\end{matrix}\right))\left(\begin{matrix}1&1\\\frac{2}{5}&-\frac{3}{8}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{2}{5}&-\frac{3}{8}\end{matrix}\right))\left(\begin{matrix}220\\-5\end{matrix}\right)
\left(\begin{matrix}1&1\\\frac{2}{5}&-\frac{3}{8}\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{2}{5}&-\frac{3}{8}\end{matrix}\right))\left(\begin{matrix}220\\-5\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\\frac{2}{5}&-\frac{3}{8}\end{matrix}\right))\left(\begin{matrix}220\\-5\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{3}{8}}{-\frac{3}{8}-\frac{2}{5}}&-\frac{1}{-\frac{3}{8}-\frac{2}{5}}\\-\frac{\frac{2}{5}}{-\frac{3}{8}-\frac{2}{5}}&\frac{1}{-\frac{3}{8}-\frac{2}{5}}\end{matrix}\right)\left(\begin{matrix}220\\-5\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{31}&\frac{40}{31}\\\frac{16}{31}&-\frac{40}{31}\end{matrix}\right)\left(\begin{matrix}220\\-5\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{31}\times 220+\frac{40}{31}\left(-5\right)\\\frac{16}{31}\times 220-\frac{40}{31}\left(-5\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\120\end{matrix}\right)
అంకగణితము చేయండి.
x=100,y=120
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
\frac{2}{5}x-\frac{3}{8}y=-5
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి \frac{3}{8}yని వ్యవకలనం చేయండి.
x+y=220,\frac{2}{5}x-\frac{3}{8}y=-5
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
\frac{2}{5}x+\frac{2}{5}y=\frac{2}{5}\times 220,\frac{2}{5}x-\frac{3}{8}y=-5
x మరియు \frac{2x}{5}ని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను \frac{2}{5}తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 1తో గుణించండి.
\frac{2}{5}x+\frac{2}{5}y=88,\frac{2}{5}x-\frac{3}{8}y=-5
సరళీకృతం చేయండి.
\frac{2}{5}x-\frac{2}{5}x+\frac{2}{5}y+\frac{3}{8}y=88+5
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా \frac{2}{5}x-\frac{3}{8}y=-5ని \frac{2}{5}x+\frac{2}{5}y=88 నుండి వ్యవకలనం చేయండి.
\frac{2}{5}y+\frac{3}{8}y=88+5
-\frac{2x}{5}కు \frac{2x}{5}ని కూడండి. \frac{2x}{5} మరియు -\frac{2x}{5} విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
\frac{31}{40}y=88+5
\frac{3y}{8}కు \frac{2y}{5}ని కూడండి.
\frac{31}{40}y=93
5కు 88ని కూడండి.
y=120
సమీకరణము యొక్క రెండు వైపులా \frac{31}{40}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
\frac{2}{5}x-\frac{3}{8}\times 120=-5
\frac{2}{5}x-\frac{3}{8}y=-5లో yను 120 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
\frac{2}{5}x-45=-5
-\frac{3}{8} సార్లు 120ని గుణించండి.
\frac{2}{5}x=40
సమీకరణం యొక్క రెండు వైపులా 45ని కూడండి.
x=100
సమీకరణము యొక్క రెండు వైపులా \frac{2}{5}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=100,y=120
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}