మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x+3y=1,2x+3y=1
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
x+3y=1
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
x=-3y+1
సమీకరణము యొక్క రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
2\left(-3y+1\right)+3y=1
మరొక సమీకరణములో xను -3y+1 స్థానంలో ప్రతిక్షేపించండి, 2x+3y=1.
-6y+2+3y=1
2 సార్లు -3y+1ని గుణించండి.
-3y+2=1
3yకు -6yని కూడండి.
-3y=-1
సమీకరణము యొక్క రెండు భాగాల నుండి 2ని వ్యవకలనం చేయండి.
y=\frac{1}{3}
రెండు వైపులా -3తో భాగించండి.
x=-3\times \frac{1}{3}+1
x=-3y+1లో yను \frac{1}{3} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-1+1
-3 సార్లు \frac{1}{3}ని గుణించండి.
x=0
-1కు 1ని కూడండి.
x=0,y=\frac{1}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
x+3y=1,2x+3y=1
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&3\\2&3\end{matrix}\right))\left(\begin{matrix}1&3\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&3\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
\left(\begin{matrix}1&3\\2&3\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&3\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\2&3\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-3\times 2}&-\frac{3}{3-3\times 2}\\-\frac{2}{3-3\times 2}&\frac{1}{3-3\times 2}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1+1\\\frac{2-1}{3}\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\\frac{1}{3}\end{matrix}\right)
అంకగణితము చేయండి.
x=0,y=\frac{1}{3}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
x+3y=1,2x+3y=1
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
x-2x+3y-3y=1-1
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 2x+3y=1ని x+3y=1 నుండి వ్యవకలనం చేయండి.
x-2x=1-1
-3yకు 3yని కూడండి. 3y మరియు -3y విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-x=1-1
-2xకు xని కూడండి.
-x=0
-1కు 1ని కూడండి.
x=0
రెండు వైపులా -1తో భాగించండి.
3y=1
2x+3y=1లో xను 0 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y=\frac{1}{3}
రెండు వైపులా 3తో భాగించండి.
x=0,y=\frac{1}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.