మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x+2y=7,4x+3y=8
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
x+2y=7
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
x=-2y+7
సమీకరణము యొక్క రెండు భాగాల నుండి 2yని వ్యవకలనం చేయండి.
4\left(-2y+7\right)+3y=8
మరొక సమీకరణములో xను -2y+7 స్థానంలో ప్రతిక్షేపించండి, 4x+3y=8.
-8y+28+3y=8
4 సార్లు -2y+7ని గుణించండి.
-5y+28=8
3yకు -8yని కూడండి.
-5y=-20
సమీకరణము యొక్క రెండు భాగాల నుండి 28ని వ్యవకలనం చేయండి.
y=4
రెండు వైపులా -5తో భాగించండి.
x=-2\times 4+7
x=-2y+7లో yను 4 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-8+7
-2 సార్లు 4ని గుణించండి.
x=-1
-8కు 7ని కూడండి.
x=-1,y=4
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
x+2y=7,4x+3y=8
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}1&2\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\8\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}1&2\\4&3\end{matrix}\right))\left(\begin{matrix}1&2\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&3\end{matrix}\right))\left(\begin{matrix}7\\8\end{matrix}\right)
\left(\begin{matrix}1&2\\4&3\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&3\end{matrix}\right))\left(\begin{matrix}7\\8\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\4&3\end{matrix}\right))\left(\begin{matrix}7\\8\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-2\times 4}&-\frac{2}{3-2\times 4}\\-\frac{4}{3-2\times 4}&\frac{1}{3-2\times 4}\end{matrix}\right)\left(\begin{matrix}7\\8\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}&\frac{2}{5}\\\frac{4}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}7\\8\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5}\times 7+\frac{2}{5}\times 8\\\frac{4}{5}\times 7-\frac{1}{5}\times 8\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\4\end{matrix}\right)
అంకగణితము చేయండి.
x=-1,y=4
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
x+2y=7,4x+3y=8
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
4x+4\times 2y=4\times 7,4x+3y=8
x మరియు 4xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 4తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 1తో గుణించండి.
4x+8y=28,4x+3y=8
సరళీకృతం చేయండి.
4x-4x+8y-3y=28-8
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 4x+3y=8ని 4x+8y=28 నుండి వ్యవకలనం చేయండి.
8y-3y=28-8
-4xకు 4xని కూడండి. 4x మరియు -4x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
5y=28-8
-3yకు 8yని కూడండి.
5y=20
-8కు 28ని కూడండి.
y=4
రెండు వైపులా 5తో భాగించండి.
4x+3\times 4=8
4x+3y=8లో yను 4 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
4x+12=8
3 సార్లు 4ని గుణించండి.
4x=-4
సమీకరణము యొక్క రెండు భాగాల నుండి 12ని వ్యవకలనం చేయండి.
x=-1
రెండు వైపులా 4తో భాగించండి.
x=-1,y=4
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.