\left\{ \begin{array} { l } { 6 x - 5 y = 3 } \\ { 3 x + 2 y = 12 } \end{array} \right.
x, yని పరిష్కరించండి
x = \frac{22}{9} = 2\frac{4}{9} \approx 2.444444444
y = \frac{7}{3} = 2\frac{1}{3} \approx 2.333333333
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
6x-5y=3,3x+2y=12
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
6x-5y=3
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
6x=5y+3
సమీకరణం యొక్క రెండు వైపులా 5yని కూడండి.
x=\frac{1}{6}\left(5y+3\right)
రెండు వైపులా 6తో భాగించండి.
x=\frac{5}{6}y+\frac{1}{2}
\frac{1}{6} సార్లు 5y+3ని గుణించండి.
3\left(\frac{5}{6}y+\frac{1}{2}\right)+2y=12
మరొక సమీకరణములో xను \frac{5y}{6}+\frac{1}{2} స్థానంలో ప్రతిక్షేపించండి, 3x+2y=12.
\frac{5}{2}y+\frac{3}{2}+2y=12
3 సార్లు \frac{5y}{6}+\frac{1}{2}ని గుణించండి.
\frac{9}{2}y+\frac{3}{2}=12
2yకు \frac{5y}{2}ని కూడండి.
\frac{9}{2}y=\frac{21}{2}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{3}{2}ని వ్యవకలనం చేయండి.
y=\frac{7}{3}
సమీకరణము యొక్క రెండు వైపులా \frac{9}{2}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{5}{6}\times \frac{7}{3}+\frac{1}{2}
x=\frac{5}{6}y+\frac{1}{2}లో yను \frac{7}{3} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{35}{18}+\frac{1}{2}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{5}{6} సార్లు \frac{7}{3}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{22}{9}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{35}{18}కు \frac{1}{2}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{22}{9},y=\frac{7}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
6x-5y=3,3x+2y=12
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}6&-5\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\12\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}6&-5\\3&2\end{matrix}\right))\left(\begin{matrix}6&-5\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-5\\3&2\end{matrix}\right))\left(\begin{matrix}3\\12\end{matrix}\right)
\left(\begin{matrix}6&-5\\3&2\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-5\\3&2\end{matrix}\right))\left(\begin{matrix}3\\12\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-5\\3&2\end{matrix}\right))\left(\begin{matrix}3\\12\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{6\times 2-\left(-5\times 3\right)}&-\frac{-5}{6\times 2-\left(-5\times 3\right)}\\-\frac{3}{6\times 2-\left(-5\times 3\right)}&\frac{6}{6\times 2-\left(-5\times 3\right)}\end{matrix}\right)\left(\begin{matrix}3\\12\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{27}&\frac{5}{27}\\-\frac{1}{9}&\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}3\\12\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{27}\times 3+\frac{5}{27}\times 12\\-\frac{1}{9}\times 3+\frac{2}{9}\times 12\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{22}{9}\\\frac{7}{3}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{22}{9},y=\frac{7}{3}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
6x-5y=3,3x+2y=12
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
3\times 6x+3\left(-5\right)y=3\times 3,6\times 3x+6\times 2y=6\times 12
6x మరియు 3xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 3తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 6తో గుణించండి.
18x-15y=9,18x+12y=72
సరళీకృతం చేయండి.
18x-18x-15y-12y=9-72
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 18x+12y=72ని 18x-15y=9 నుండి వ్యవకలనం చేయండి.
-15y-12y=9-72
-18xకు 18xని కూడండి. 18x మరియు -18x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-27y=9-72
-12yకు -15yని కూడండి.
-27y=-63
-72కు 9ని కూడండి.
y=\frac{7}{3}
రెండు వైపులా -27తో భాగించండి.
3x+2\times \frac{7}{3}=12
3x+2y=12లో yను \frac{7}{3} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
3x+\frac{14}{3}=12
2 సార్లు \frac{7}{3}ని గుణించండి.
3x=\frac{22}{3}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{14}{3}ని వ్యవకలనం చేయండి.
x=\frac{22}{9}
రెండు వైపులా 3తో భాగించండి.
x=\frac{22}{9},y=\frac{7}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}