మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

y-5x=3
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 5xని వ్యవకలనం చేయండి.
6x-2y=4,-5x+y=3
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
6x-2y=4
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
6x=2y+4
సమీకరణం యొక్క రెండు వైపులా 2yని కూడండి.
x=\frac{1}{6}\left(2y+4\right)
రెండు వైపులా 6తో భాగించండి.
x=\frac{1}{3}y+\frac{2}{3}
\frac{1}{6} సార్లు 4+2yని గుణించండి.
-5\left(\frac{1}{3}y+\frac{2}{3}\right)+y=3
మరొక సమీకరణములో xను \frac{2+y}{3} స్థానంలో ప్రతిక్షేపించండి, -5x+y=3.
-\frac{5}{3}y-\frac{10}{3}+y=3
-5 సార్లు \frac{2+y}{3}ని గుణించండి.
-\frac{2}{3}y-\frac{10}{3}=3
yకు -\frac{5y}{3}ని కూడండి.
-\frac{2}{3}y=\frac{19}{3}
సమీకరణం యొక్క రెండు వైపులా \frac{10}{3}ని కూడండి.
y=-\frac{19}{2}
సమీకరణము యొక్క రెండు వైపులా -\frac{2}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{1}{3}\left(-\frac{19}{2}\right)+\frac{2}{3}
x=\frac{1}{3}y+\frac{2}{3}లో yను -\frac{19}{2} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-\frac{19}{6}+\frac{2}{3}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{1}{3} సార్లు -\frac{19}{2}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-\frac{5}{2}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{19}{6}కు \frac{2}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-\frac{5}{2},y=-\frac{19}{2}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
y-5x=3
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 5xని వ్యవకలనం చేయండి.
6x-2y=4,-5x+y=3
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}6&-2\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}6&-2\\-5&1\end{matrix}\right))\left(\begin{matrix}6&-2\\-5&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-2\\-5&1\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
\left(\begin{matrix}6&-2\\-5&1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-2\\-5&1\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-2\\-5&1\end{matrix}\right))\left(\begin{matrix}4\\3\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6-\left(-2\left(-5\right)\right)}&-\frac{-2}{6-\left(-2\left(-5\right)\right)}\\-\frac{-5}{6-\left(-2\left(-5\right)\right)}&\frac{6}{6-\left(-2\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}4\\3\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&-\frac{1}{2}\\-\frac{5}{4}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}4\\3\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 4-\frac{1}{2}\times 3\\-\frac{5}{4}\times 4-\frac{3}{2}\times 3\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\\-\frac{19}{2}\end{matrix}\right)
అంకగణితము చేయండి.
x=-\frac{5}{2},y=-\frac{19}{2}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
y-5x=3
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 5xని వ్యవకలనం చేయండి.
6x-2y=4,-5x+y=3
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-5\times 6x-5\left(-2\right)y=-5\times 4,6\left(-5\right)x+6y=6\times 3
6x మరియు -5xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -5తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 6తో గుణించండి.
-30x+10y=-20,-30x+6y=18
సరళీకృతం చేయండి.
-30x+30x+10y-6y=-20-18
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -30x+6y=18ని -30x+10y=-20 నుండి వ్యవకలనం చేయండి.
10y-6y=-20-18
30xకు -30xని కూడండి. -30x మరియు 30x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
4y=-20-18
-6yకు 10yని కూడండి.
4y=-38
-18కు -20ని కూడండి.
y=-\frac{19}{2}
రెండు వైపులా 4తో భాగించండి.
-5x-\frac{19}{2}=3
-5x+y=3లో yను -\frac{19}{2} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-5x=\frac{25}{2}
సమీకరణం యొక్క రెండు వైపులా \frac{19}{2}ని కూడండి.
x=-\frac{5}{2}
రెండు వైపులా -5తో భాగించండి.
x=-\frac{5}{2},y=-\frac{19}{2}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.