మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

6x+6y=6,6x+3y=-3
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
6x+6y=6
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
6x=-6y+6
సమీకరణము యొక్క రెండు భాగాల నుండి 6yని వ్యవకలనం చేయండి.
x=\frac{1}{6}\left(-6y+6\right)
రెండు వైపులా 6తో భాగించండి.
x=-y+1
\frac{1}{6} సార్లు -6y+6ని గుణించండి.
6\left(-y+1\right)+3y=-3
మరొక సమీకరణములో xను -y+1 స్థానంలో ప్రతిక్షేపించండి, 6x+3y=-3.
-6y+6+3y=-3
6 సార్లు -y+1ని గుణించండి.
-3y+6=-3
3yకు -6yని కూడండి.
-3y=-9
సమీకరణము యొక్క రెండు భాగాల నుండి 6ని వ్యవకలనం చేయండి.
y=3
రెండు వైపులా -3తో భాగించండి.
x=-3+1
x=-y+1లో yను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-2
-3కు 1ని కూడండి.
x=-2,y=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
6x+6y=6,6x+3y=-3
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}6&6\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-3\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}6&6\\6&3\end{matrix}\right))\left(\begin{matrix}6&6\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&6\\6&3\end{matrix}\right))\left(\begin{matrix}6\\-3\end{matrix}\right)
\left(\begin{matrix}6&6\\6&3\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&6\\6&3\end{matrix}\right))\left(\begin{matrix}6\\-3\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&6\\6&3\end{matrix}\right))\left(\begin{matrix}6\\-3\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{6\times 3-6\times 6}&-\frac{6}{6\times 3-6\times 6}\\-\frac{6}{6\times 3-6\times 6}&\frac{6}{6\times 3-6\times 6}\end{matrix}\right)\left(\begin{matrix}6\\-3\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&\frac{1}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}6\\-3\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\times 6+\frac{1}{3}\left(-3\right)\\\frac{1}{3}\times 6-\frac{1}{3}\left(-3\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\3\end{matrix}\right)
అంకగణితము చేయండి.
x=-2,y=3
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
6x+6y=6,6x+3y=-3
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
6x-6x+6y-3y=6+3
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 6x+3y=-3ని 6x+6y=6 నుండి వ్యవకలనం చేయండి.
6y-3y=6+3
-6xకు 6xని కూడండి. 6x మరియు -6x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
3y=6+3
-3yకు 6yని కూడండి.
3y=9
3కు 6ని కూడండి.
y=3
రెండు వైపులా 3తో భాగించండి.
6x+3\times 3=-3
6x+3y=-3లో yను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
6x+9=-3
3 సార్లు 3ని గుణించండి.
6x=-12
సమీకరణము యొక్క రెండు భాగాల నుండి 9ని వ్యవకలనం చేయండి.
x=-2
రెండు వైపులా 6తో భాగించండి.
x=-2,y=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.