\left\{ \begin{array} { l } { 6 x + 2 y = 300 } \\ { 3 x + 5 y = 600 } \end{array} \right.
x, yని పరిష్కరించండి
x = \frac{25}{2} = 12\frac{1}{2} = 12.5
y = \frac{225}{2} = 112\frac{1}{2} = 112.5
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
6x+2y=300,3x+5y=600
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
6x+2y=300
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
6x=-2y+300
సమీకరణము యొక్క రెండు భాగాల నుండి 2yని వ్యవకలనం చేయండి.
x=\frac{1}{6}\left(-2y+300\right)
రెండు వైపులా 6తో భాగించండి.
x=-\frac{1}{3}y+50
\frac{1}{6} సార్లు -2y+300ని గుణించండి.
3\left(-\frac{1}{3}y+50\right)+5y=600
మరొక సమీకరణములో xను -\frac{y}{3}+50 స్థానంలో ప్రతిక్షేపించండి, 3x+5y=600.
-y+150+5y=600
3 సార్లు -\frac{y}{3}+50ని గుణించండి.
4y+150=600
5yకు -yని కూడండి.
4y=450
సమీకరణము యొక్క రెండు భాగాల నుండి 150ని వ్యవకలనం చేయండి.
y=\frac{225}{2}
రెండు వైపులా 4తో భాగించండి.
x=-\frac{1}{3}\times \frac{225}{2}+50
x=-\frac{1}{3}y+50లో yను \frac{225}{2} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-\frac{75}{2}+50
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{1}{3} సార్లు \frac{225}{2}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{25}{2}
-\frac{75}{2}కు 50ని కూడండి.
x=\frac{25}{2},y=\frac{225}{2}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
6x+2y=300,3x+5y=600
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}6&2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}300\\600\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}6&2\\3&5\end{matrix}\right))\left(\begin{matrix}6&2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\3&5\end{matrix}\right))\left(\begin{matrix}300\\600\end{matrix}\right)
\left(\begin{matrix}6&2\\3&5\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\3&5\end{matrix}\right))\left(\begin{matrix}300\\600\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&2\\3&5\end{matrix}\right))\left(\begin{matrix}300\\600\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6\times 5-2\times 3}&-\frac{2}{6\times 5-2\times 3}\\-\frac{3}{6\times 5-2\times 3}&\frac{6}{6\times 5-2\times 3}\end{matrix}\right)\left(\begin{matrix}300\\600\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{24}&-\frac{1}{12}\\-\frac{1}{8}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}300\\600\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{24}\times 300-\frac{1}{12}\times 600\\-\frac{1}{8}\times 300+\frac{1}{4}\times 600\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{25}{2}\\\frac{225}{2}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{25}{2},y=\frac{225}{2}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
6x+2y=300,3x+5y=600
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
3\times 6x+3\times 2y=3\times 300,6\times 3x+6\times 5y=6\times 600
6x మరియు 3xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 3తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 6తో గుణించండి.
18x+6y=900,18x+30y=3600
సరళీకృతం చేయండి.
18x-18x+6y-30y=900-3600
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 18x+30y=3600ని 18x+6y=900 నుండి వ్యవకలనం చేయండి.
6y-30y=900-3600
-18xకు 18xని కూడండి. 18x మరియు -18x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-24y=900-3600
-30yకు 6yని కూడండి.
-24y=-2700
-3600కు 900ని కూడండి.
y=\frac{225}{2}
రెండు వైపులా -24తో భాగించండి.
3x+5\times \frac{225}{2}=600
3x+5y=600లో yను \frac{225}{2} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
3x+\frac{1125}{2}=600
5 సార్లు \frac{225}{2}ని గుణించండి.
3x=\frac{75}{2}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{1125}{2}ని వ్యవకలనం చేయండి.
x=\frac{25}{2}
రెండు వైపులా 3తో భాగించండి.
x=\frac{25}{2},y=\frac{225}{2}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}