మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

5x-y=9,2x+4y=8
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
5x-y=9
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
5x=y+9
సమీకరణం యొక్క రెండు వైపులా yని కూడండి.
x=\frac{1}{5}\left(y+9\right)
రెండు వైపులా 5తో భాగించండి.
x=\frac{1}{5}y+\frac{9}{5}
\frac{1}{5} సార్లు y+9ని గుణించండి.
2\left(\frac{1}{5}y+\frac{9}{5}\right)+4y=8
మరొక సమీకరణములో xను \frac{9+y}{5} స్థానంలో ప్రతిక్షేపించండి, 2x+4y=8.
\frac{2}{5}y+\frac{18}{5}+4y=8
2 సార్లు \frac{9+y}{5}ని గుణించండి.
\frac{22}{5}y+\frac{18}{5}=8
4yకు \frac{2y}{5}ని కూడండి.
\frac{22}{5}y=\frac{22}{5}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{18}{5}ని వ్యవకలనం చేయండి.
y=1
సమీకరణము యొక్క రెండు వైపులా \frac{22}{5}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{1+9}{5}
x=\frac{1}{5}y+\frac{9}{5}లో yను 1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=2
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{1}{5}కు \frac{9}{5}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=2,y=1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
5x-y=9,2x+4y=8
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}5&-1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\8\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}5&-1\\2&4\end{matrix}\right))\left(\begin{matrix}5&-1\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&4\end{matrix}\right))\left(\begin{matrix}9\\8\end{matrix}\right)
\left(\begin{matrix}5&-1\\2&4\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&4\end{matrix}\right))\left(\begin{matrix}9\\8\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-1\\2&4\end{matrix}\right))\left(\begin{matrix}9\\8\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5\times 4-\left(-2\right)}&-\frac{-1}{5\times 4-\left(-2\right)}\\-\frac{2}{5\times 4-\left(-2\right)}&\frac{5}{5\times 4-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}9\\8\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&\frac{1}{22}\\-\frac{1}{11}&\frac{5}{22}\end{matrix}\right)\left(\begin{matrix}9\\8\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\times 9+\frac{1}{22}\times 8\\-\frac{1}{11}\times 9+\frac{5}{22}\times 8\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
అంకగణితము చేయండి.
x=2,y=1
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
5x-y=9,2x+4y=8
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2\times 5x+2\left(-1\right)y=2\times 9,5\times 2x+5\times 4y=5\times 8
5x మరియు 2xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 2తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 5తో గుణించండి.
10x-2y=18,10x+20y=40
సరళీకృతం చేయండి.
10x-10x-2y-20y=18-40
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 10x+20y=40ని 10x-2y=18 నుండి వ్యవకలనం చేయండి.
-2y-20y=18-40
-10xకు 10xని కూడండి. 10x మరియు -10x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-22y=18-40
-20yకు -2yని కూడండి.
-22y=-22
-40కు 18ని కూడండి.
y=1
రెండు వైపులా -22తో భాగించండి.
2x+4=8
2x+4y=8లో yను 1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
2x=4
సమీకరణము యొక్క రెండు భాగాల నుండి 4ని వ్యవకలనం చేయండి.
x=2
రెండు వైపులా 2తో భాగించండి.
x=2,y=1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.