మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

5x+y=35,7x+1.1y=40
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
5x+y=35
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
5x=-y+35
సమీకరణము యొక్క రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x=\frac{1}{5}\left(-y+35\right)
రెండు వైపులా 5తో భాగించండి.
x=-\frac{1}{5}y+7
\frac{1}{5} సార్లు -y+35ని గుణించండి.
7\left(-\frac{1}{5}y+7\right)+1.1y=40
మరొక సమీకరణములో xను -\frac{y}{5}+7 స్థానంలో ప్రతిక్షేపించండి, 7x+1.1y=40.
-\frac{7}{5}y+49+1.1y=40
7 సార్లు -\frac{y}{5}+7ని గుణించండి.
-\frac{3}{10}y+49=40
\frac{11y}{10}కు -\frac{7y}{5}ని కూడండి.
-\frac{3}{10}y=-9
సమీకరణము యొక్క రెండు భాగాల నుండి 49ని వ్యవకలనం చేయండి.
y=30
సమీకరణము యొక్క రెండు వైపులా -\frac{3}{10}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{1}{5}\times 30+7
x=-\frac{1}{5}y+7లో yను 30 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-6+7
-\frac{1}{5} సార్లు 30ని గుణించండి.
x=1
-6కు 7ని కూడండి.
x=1,y=30
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
5x+y=35,7x+1.1y=40
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}5&1\\7&1.1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}35\\40\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}5&1\\7&1.1\end{matrix}\right))\left(\begin{matrix}5&1\\7&1.1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\7&1.1\end{matrix}\right))\left(\begin{matrix}35\\40\end{matrix}\right)
\left(\begin{matrix}5&1\\7&1.1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\7&1.1\end{matrix}\right))\left(\begin{matrix}35\\40\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\7&1.1\end{matrix}\right))\left(\begin{matrix}35\\40\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1.1}{5\times 1.1-7}&-\frac{1}{5\times 1.1-7}\\-\frac{7}{5\times 1.1-7}&\frac{5}{5\times 1.1-7}\end{matrix}\right)\left(\begin{matrix}35\\40\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{15}&\frac{2}{3}\\\frac{14}{3}&-\frac{10}{3}\end{matrix}\right)\left(\begin{matrix}35\\40\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{15}\times 35+\frac{2}{3}\times 40\\\frac{14}{3}\times 35-\frac{10}{3}\times 40\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\30\end{matrix}\right)
అంకగణితము చేయండి.
x=1,y=30
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
5x+y=35,7x+1.1y=40
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
7\times 5x+7y=7\times 35,5\times 7x+5\times 1.1y=5\times 40
5x మరియు 7xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 7తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 5తో గుణించండి.
35x+7y=245,35x+5.5y=200
సరళీకృతం చేయండి.
35x-35x+7y-5.5y=245-200
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 35x+5.5y=200ని 35x+7y=245 నుండి వ్యవకలనం చేయండి.
7y-5.5y=245-200
-35xకు 35xని కూడండి. 35x మరియు -35x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
1.5y=245-200
-\frac{11y}{2}కు 7yని కూడండి.
1.5y=45
-200కు 245ని కూడండి.
y=30
సమీకరణము యొక్క రెండు వైపులా 1.5తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
7x+1.1\times 30=40
7x+1.1y=40లో yను 30 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
7x+33=40
1.1 సార్లు 30ని గుణించండి.
7x=7
సమీకరణము యొక్క రెండు భాగాల నుండి 33ని వ్యవకలనం చేయండి.
x=1
రెండు వైపులా 7తో భాగించండి.
x=1,y=30
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.