\left\{ \begin{array} { l } { 5 x + 4 y = - 3 } \\ { 6 x + 3 y = - 2 } \end{array} \right.
x, yని పరిష్కరించండి
x=\frac{1}{9}\approx 0.111111111
y=-\frac{8}{9}\approx -0.888888889
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
5x+4y=-3,6x+3y=-2
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
5x+4y=-3
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
5x=-4y-3
సమీకరణము యొక్క రెండు భాగాల నుండి 4yని వ్యవకలనం చేయండి.
x=\frac{1}{5}\left(-4y-3\right)
రెండు వైపులా 5తో భాగించండి.
x=-\frac{4}{5}y-\frac{3}{5}
\frac{1}{5} సార్లు -4y-3ని గుణించండి.
6\left(-\frac{4}{5}y-\frac{3}{5}\right)+3y=-2
మరొక సమీకరణములో xను \frac{-4y-3}{5} స్థానంలో ప్రతిక్షేపించండి, 6x+3y=-2.
-\frac{24}{5}y-\frac{18}{5}+3y=-2
6 సార్లు \frac{-4y-3}{5}ని గుణించండి.
-\frac{9}{5}y-\frac{18}{5}=-2
3yకు -\frac{24y}{5}ని కూడండి.
-\frac{9}{5}y=\frac{8}{5}
సమీకరణం యొక్క రెండు వైపులా \frac{18}{5}ని కూడండి.
y=-\frac{8}{9}
సమీకరణము యొక్క రెండు వైపులా -\frac{9}{5}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{4}{5}\left(-\frac{8}{9}\right)-\frac{3}{5}
x=-\frac{4}{5}y-\frac{3}{5}లో yను -\frac{8}{9} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{32}{45}-\frac{3}{5}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{4}{5} సార్లు -\frac{8}{9}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{1}{9}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{32}{45}కు -\frac{3}{5}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{1}{9},y=-\frac{8}{9}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
5x+4y=-3,6x+3y=-2
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}5&4\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-2\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}5&4\\6&3\end{matrix}\right))\left(\begin{matrix}5&4\\6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\6&3\end{matrix}\right))\left(\begin{matrix}-3\\-2\end{matrix}\right)
\left(\begin{matrix}5&4\\6&3\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\6&3\end{matrix}\right))\left(\begin{matrix}-3\\-2\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&4\\6&3\end{matrix}\right))\left(\begin{matrix}-3\\-2\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-4\times 6}&-\frac{4}{5\times 3-4\times 6}\\-\frac{6}{5\times 3-4\times 6}&\frac{5}{5\times 3-4\times 6}\end{matrix}\right)\left(\begin{matrix}-3\\-2\end{matrix}\right)
2\times 2 మాత్రికకు సంబంధించి \left(\begin{matrix}a&b\\c&d\end{matrix}\right), విలోమ మాత్రిక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) అయితే, మాత్రిక సమీకరణాన్ని మాత్రిక గుణాకార సమస్య వలె తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{4}{9}\\\frac{2}{3}&-\frac{5}{9}\end{matrix}\right)\left(\begin{matrix}-3\\-2\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-3\right)+\frac{4}{9}\left(-2\right)\\\frac{2}{3}\left(-3\right)-\frac{5}{9}\left(-2\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\\-\frac{8}{9}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{1}{9},y=-\frac{8}{9}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
5x+4y=-3,6x+3y=-2
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
6\times 5x+6\times 4y=6\left(-3\right),5\times 6x+5\times 3y=5\left(-2\right)
5x మరియు 6xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 6తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 5తో గుణించండి.
30x+24y=-18,30x+15y=-10
సరళీకృతం చేయండి.
30x-30x+24y-15y=-18+10
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 30x+15y=-10ని 30x+24y=-18 నుండి వ్యవకలనం చేయండి.
24y-15y=-18+10
-30xకు 30xని కూడండి. 30x మరియు -30x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
9y=-18+10
-15yకు 24yని కూడండి.
9y=-8
10కు -18ని కూడండి.
y=-\frac{8}{9}
రెండు వైపులా 9తో భాగించండి.
6x+3\left(-\frac{8}{9}\right)=-2
6x+3y=-2లో yను -\frac{8}{9} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
6x-\frac{8}{3}=-2
3 సార్లు -\frac{8}{9}ని గుణించండి.
6x=\frac{2}{3}
సమీకరణం యొక్క రెండు వైపులా \frac{8}{3}ని కూడండి.
x=\frac{1}{9}
రెండు వైపులా 6తో భాగించండి.
x=\frac{1}{9},y=-\frac{8}{9}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}