మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

5x+3y=6,7x+5y=56
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
5x+3y=6
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
5x=-3y+6
సమీకరణము యొక్క రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
x=\frac{1}{5}\left(-3y+6\right)
రెండు వైపులా 5తో భాగించండి.
x=-\frac{3}{5}y+\frac{6}{5}
\frac{1}{5} సార్లు -3y+6ని గుణించండి.
7\left(-\frac{3}{5}y+\frac{6}{5}\right)+5y=56
మరొక సమీకరణములో xను \frac{-3y+6}{5} స్థానంలో ప్రతిక్షేపించండి, 7x+5y=56.
-\frac{21}{5}y+\frac{42}{5}+5y=56
7 సార్లు \frac{-3y+6}{5}ని గుణించండి.
\frac{4}{5}y+\frac{42}{5}=56
5yకు -\frac{21y}{5}ని కూడండి.
\frac{4}{5}y=\frac{238}{5}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{42}{5}ని వ్యవకలనం చేయండి.
y=\frac{119}{2}
సమీకరణము యొక్క రెండు వైపులా \frac{4}{5}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{3}{5}\times \frac{119}{2}+\frac{6}{5}
x=-\frac{3}{5}y+\frac{6}{5}లో yను \frac{119}{2} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-\frac{357}{10}+\frac{6}{5}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{3}{5} సార్లు \frac{119}{2}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-\frac{69}{2}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{357}{10}కు \frac{6}{5}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-\frac{69}{2},y=\frac{119}{2}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
5x+3y=6,7x+5y=56
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}5&3\\7&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\56\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}5&3\\7&5\end{matrix}\right))\left(\begin{matrix}5&3\\7&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\7&5\end{matrix}\right))\left(\begin{matrix}6\\56\end{matrix}\right)
\left(\begin{matrix}5&3\\7&5\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\7&5\end{matrix}\right))\left(\begin{matrix}6\\56\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\7&5\end{matrix}\right))\left(\begin{matrix}6\\56\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-3\times 7}&-\frac{3}{5\times 5-3\times 7}\\-\frac{7}{5\times 5-3\times 7}&\frac{5}{5\times 5-3\times 7}\end{matrix}\right)\left(\begin{matrix}6\\56\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4}&-\frac{3}{4}\\-\frac{7}{4}&\frac{5}{4}\end{matrix}\right)\left(\begin{matrix}6\\56\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4}\times 6-\frac{3}{4}\times 56\\-\frac{7}{4}\times 6+\frac{5}{4}\times 56\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{69}{2}\\\frac{119}{2}\end{matrix}\right)
అంకగణితము చేయండి.
x=-\frac{69}{2},y=\frac{119}{2}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
5x+3y=6,7x+5y=56
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
7\times 5x+7\times 3y=7\times 6,5\times 7x+5\times 5y=5\times 56
5x మరియు 7xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 7తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 5తో గుణించండి.
35x+21y=42,35x+25y=280
సరళీకృతం చేయండి.
35x-35x+21y-25y=42-280
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 35x+25y=280ని 35x+21y=42 నుండి వ్యవకలనం చేయండి.
21y-25y=42-280
-35xకు 35xని కూడండి. 35x మరియు -35x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-4y=42-280
-25yకు 21yని కూడండి.
-4y=-238
-280కు 42ని కూడండి.
y=\frac{119}{2}
రెండు వైపులా -4తో భాగించండి.
7x+5\times \frac{119}{2}=56
7x+5y=56లో yను \frac{119}{2} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
7x+\frac{595}{2}=56
5 సార్లు \frac{119}{2}ని గుణించండి.
7x=-\frac{483}{2}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{595}{2}ని వ్యవకలనం చేయండి.
x=-\frac{69}{2}
రెండు వైపులా 7తో భాగించండి.
x=-\frac{69}{2},y=\frac{119}{2}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.