మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

y-x=-2
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి xని వ్యవకలనం చేయండి.
5x+2y=24,-x+y=-2
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
5x+2y=24
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
5x=-2y+24
సమీకరణము యొక్క రెండు భాగాల నుండి 2yని వ్యవకలనం చేయండి.
x=\frac{1}{5}\left(-2y+24\right)
రెండు వైపులా 5తో భాగించండి.
x=-\frac{2}{5}y+\frac{24}{5}
\frac{1}{5} సార్లు -2y+24ని గుణించండి.
-\left(-\frac{2}{5}y+\frac{24}{5}\right)+y=-2
మరొక సమీకరణములో xను \frac{-2y+24}{5} స్థానంలో ప్రతిక్షేపించండి, -x+y=-2.
\frac{2}{5}y-\frac{24}{5}+y=-2
-1 సార్లు \frac{-2y+24}{5}ని గుణించండి.
\frac{7}{5}y-\frac{24}{5}=-2
yకు \frac{2y}{5}ని కూడండి.
\frac{7}{5}y=\frac{14}{5}
సమీకరణం యొక్క రెండు వైపులా \frac{24}{5}ని కూడండి.
y=2
సమీకరణము యొక్క రెండు వైపులా \frac{7}{5}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{2}{5}\times 2+\frac{24}{5}
x=-\frac{2}{5}y+\frac{24}{5}లో yను 2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-4+24}{5}
-\frac{2}{5} సార్లు 2ని గుణించండి.
x=4
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{4}{5}కు \frac{24}{5}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=4,y=2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
y-x=-2
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి xని వ్యవకలనం చేయండి.
5x+2y=24,-x+y=-2
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}5&2\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\-2\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}5&2\\-1&1\end{matrix}\right))\left(\begin{matrix}5&2\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\-1&1\end{matrix}\right))\left(\begin{matrix}24\\-2\end{matrix}\right)
\left(\begin{matrix}5&2\\-1&1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\-1&1\end{matrix}\right))\left(\begin{matrix}24\\-2\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\-1&1\end{matrix}\right))\left(\begin{matrix}24\\-2\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-2\left(-1\right)}&-\frac{2}{5-2\left(-1\right)}\\-\frac{-1}{5-2\left(-1\right)}&\frac{5}{5-2\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}24\\-2\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&-\frac{2}{7}\\\frac{1}{7}&\frac{5}{7}\end{matrix}\right)\left(\begin{matrix}24\\-2\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 24-\frac{2}{7}\left(-2\right)\\\frac{1}{7}\times 24+\frac{5}{7}\left(-2\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
అంకగణితము చేయండి.
x=4,y=2
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
y-x=-2
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి xని వ్యవకలనం చేయండి.
5x+2y=24,-x+y=-2
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-5x-2y=-24,5\left(-1\right)x+5y=5\left(-2\right)
5x మరియు -xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -1తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 5తో గుణించండి.
-5x-2y=-24,-5x+5y=-10
సరళీకృతం చేయండి.
-5x+5x-2y-5y=-24+10
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -5x+5y=-10ని -5x-2y=-24 నుండి వ్యవకలనం చేయండి.
-2y-5y=-24+10
5xకు -5xని కూడండి. -5x మరియు 5x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-7y=-24+10
-5yకు -2yని కూడండి.
-7y=-14
10కు -24ని కూడండి.
y=2
రెండు వైపులా -7తో భాగించండి.
-x+2=-2
-x+y=-2లో yను 2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-x=-4
సమీకరణము యొక్క రెండు భాగాల నుండి 2ని వ్యవకలనం చేయండి.
x=4
రెండు వైపులా -1తో భాగించండి.
x=4,y=2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.