\left\{ \begin{array} { l } { 40 x + 720 y = 112 } \\ { 120 x + 2205 y = 340.5 } \end{array} \right.
x, yని పరిష్కరించండి
x=1
y=0.1
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
40x+720y=112,120x+2205y=340.5
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
40x+720y=112
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
40x=-720y+112
సమీకరణము యొక్క రెండు భాగాల నుండి 720yని వ్యవకలనం చేయండి.
x=\frac{1}{40}\left(-720y+112\right)
రెండు వైపులా 40తో భాగించండి.
x=-18y+\frac{14}{5}
\frac{1}{40} సార్లు -720y+112ని గుణించండి.
120\left(-18y+\frac{14}{5}\right)+2205y=340.5
మరొక సమీకరణములో xను -18y+\frac{14}{5} స్థానంలో ప్రతిక్షేపించండి, 120x+2205y=340.5.
-2160y+336+2205y=340.5
120 సార్లు -18y+\frac{14}{5}ని గుణించండి.
45y+336=340.5
2205yకు -2160yని కూడండి.
45y=4.5
సమీకరణము యొక్క రెండు భాగాల నుండి 336ని వ్యవకలనం చేయండి.
y=0.1
రెండు వైపులా 45తో భాగించండి.
x=-18\times 0.1+\frac{14}{5}
x=-18y+\frac{14}{5}లో yను 0.1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-9+14}{5}
-18 సార్లు 0.1ని గుణించండి.
x=1
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -1.8కు \frac{14}{5}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=1,y=0.1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
40x+720y=112,120x+2205y=340.5
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}40&720\\120&2205\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}112\\340.5\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}40&720\\120&2205\end{matrix}\right))\left(\begin{matrix}40&720\\120&2205\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&720\\120&2205\end{matrix}\right))\left(\begin{matrix}112\\340.5\end{matrix}\right)
\left(\begin{matrix}40&720\\120&2205\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&720\\120&2205\end{matrix}\right))\left(\begin{matrix}112\\340.5\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&720\\120&2205\end{matrix}\right))\left(\begin{matrix}112\\340.5\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2205}{40\times 2205-720\times 120}&-\frac{720}{40\times 2205-720\times 120}\\-\frac{120}{40\times 2205-720\times 120}&\frac{40}{40\times 2205-720\times 120}\end{matrix}\right)\left(\begin{matrix}112\\340.5\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{49}{40}&-\frac{2}{5}\\-\frac{1}{15}&\frac{1}{45}\end{matrix}\right)\left(\begin{matrix}112\\340.5\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{49}{40}\times 112-\frac{2}{5}\times 340.5\\-\frac{1}{15}\times 112+\frac{1}{45}\times 340.5\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\\frac{1}{10}\end{matrix}\right)
అంకగణితము చేయండి.
x=1,y=\frac{1}{10}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
40x+720y=112,120x+2205y=340.5
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
120\times 40x+120\times 720y=120\times 112,40\times 120x+40\times 2205y=40\times 340.5
40x మరియు 120xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 120తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 40తో గుణించండి.
4800x+86400y=13440,4800x+88200y=13620
సరళీకృతం చేయండి.
4800x-4800x+86400y-88200y=13440-13620
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 4800x+88200y=13620ని 4800x+86400y=13440 నుండి వ్యవకలనం చేయండి.
86400y-88200y=13440-13620
-4800xకు 4800xని కూడండి. 4800x మరియు -4800x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-1800y=13440-13620
-88200yకు 86400yని కూడండి.
-1800y=-180
-13620కు 13440ని కూడండి.
y=\frac{1}{10}
రెండు వైపులా -1800తో భాగించండి.
120x+2205\times \frac{1}{10}=340.5
120x+2205y=340.5లో yను \frac{1}{10} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
120x+\frac{441}{2}=340.5
2205 సార్లు \frac{1}{10}ని గుణించండి.
120x=120
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{441}{2}ని వ్యవకలనం చేయండి.
x=1
రెండు వైపులా 120తో భాగించండి.
x=1,y=\frac{1}{10}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}