\left\{ \begin{array} { l } { 4 x + y = 5 } \\ { 2 x - y = - 2 } \end{array} \right.
x, yని పరిష్కరించండి
x=\frac{1}{2}=0.5
y=3
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
4x+y=5,2x-y=-2
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
4x+y=5
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
4x=-y+5
సమీకరణము యొక్క రెండు భాగాల నుండి yని వ్యవకలనం చేయండి.
x=\frac{1}{4}\left(-y+5\right)
రెండు వైపులా 4తో భాగించండి.
x=-\frac{1}{4}y+\frac{5}{4}
\frac{1}{4} సార్లు -y+5ని గుణించండి.
2\left(-\frac{1}{4}y+\frac{5}{4}\right)-y=-2
మరొక సమీకరణములో xను \frac{-y+5}{4} స్థానంలో ప్రతిక్షేపించండి, 2x-y=-2.
-\frac{1}{2}y+\frac{5}{2}-y=-2
2 సార్లు \frac{-y+5}{4}ని గుణించండి.
-\frac{3}{2}y+\frac{5}{2}=-2
-yకు -\frac{y}{2}ని కూడండి.
-\frac{3}{2}y=-\frac{9}{2}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{5}{2}ని వ్యవకలనం చేయండి.
y=3
సమీకరణము యొక్క రెండు వైపులా -\frac{3}{2}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{1}{4}\times 3+\frac{5}{4}
x=-\frac{1}{4}y+\frac{5}{4}లో yను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-3+5}{4}
-\frac{1}{4} సార్లు 3ని గుణించండి.
x=\frac{1}{2}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{3}{4}కు \frac{5}{4}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{1}{2},y=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
4x+y=5,2x-y=-2
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}4&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}4&1\\2&-1\end{matrix}\right))\left(\begin{matrix}4&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&-1\end{matrix}\right))\left(\begin{matrix}5\\-2\end{matrix}\right)
\left(\begin{matrix}4&1\\2&-1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&-1\end{matrix}\right))\left(\begin{matrix}5\\-2\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&-1\end{matrix}\right))\left(\begin{matrix}5\\-2\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-2}&-\frac{1}{4\left(-1\right)-2}\\-\frac{2}{4\left(-1\right)-2}&\frac{4}{4\left(-1\right)-2}\end{matrix}\right)\left(\begin{matrix}5\\-2\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{1}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}5\\-2\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 5+\frac{1}{6}\left(-2\right)\\\frac{1}{3}\times 5-\frac{2}{3}\left(-2\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\3\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{1}{2},y=3
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
4x+y=5,2x-y=-2
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2\times 4x+2y=2\times 5,4\times 2x+4\left(-1\right)y=4\left(-2\right)
4x మరియు 2xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 2తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 4తో గుణించండి.
8x+2y=10,8x-4y=-8
సరళీకృతం చేయండి.
8x-8x+2y+4y=10+8
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 8x-4y=-8ని 8x+2y=10 నుండి వ్యవకలనం చేయండి.
2y+4y=10+8
-8xకు 8xని కూడండి. 8x మరియు -8x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
6y=10+8
4yకు 2yని కూడండి.
6y=18
8కు 10ని కూడండి.
y=3
రెండు వైపులా 6తో భాగించండి.
2x-3=-2
2x-y=-2లో yను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
2x=1
సమీకరణం యొక్క రెండు వైపులా 3ని కూడండి.
x=\frac{1}{2}
రెండు వైపులా 2తో భాగించండి.
x=\frac{1}{2},y=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}