మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

4x+3y=71,7x+5y=120
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
4x+3y=71
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
4x=-3y+71
సమీకరణము యొక్క రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
x=\frac{1}{4}\left(-3y+71\right)
రెండు వైపులా 4తో భాగించండి.
x=-\frac{3}{4}y+\frac{71}{4}
\frac{1}{4} సార్లు -3y+71ని గుణించండి.
7\left(-\frac{3}{4}y+\frac{71}{4}\right)+5y=120
మరొక సమీకరణములో xను \frac{-3y+71}{4} స్థానంలో ప్రతిక్షేపించండి, 7x+5y=120.
-\frac{21}{4}y+\frac{497}{4}+5y=120
7 సార్లు \frac{-3y+71}{4}ని గుణించండి.
-\frac{1}{4}y+\frac{497}{4}=120
5yకు -\frac{21y}{4}ని కూడండి.
-\frac{1}{4}y=-\frac{17}{4}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{497}{4}ని వ్యవకలనం చేయండి.
y=17
రెండు వైపులా -4తో గుణించండి.
x=-\frac{3}{4}\times 17+\frac{71}{4}
x=-\frac{3}{4}y+\frac{71}{4}లో yను 17 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-51+71}{4}
-\frac{3}{4} సార్లు 17ని గుణించండి.
x=5
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{51}{4}కు \frac{71}{4}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=5,y=17
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
4x+3y=71,7x+5y=120
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}4&3\\7&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}71\\120\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}4&3\\7&5\end{matrix}\right))\left(\begin{matrix}4&3\\7&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\7&5\end{matrix}\right))\left(\begin{matrix}71\\120\end{matrix}\right)
\left(\begin{matrix}4&3\\7&5\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\7&5\end{matrix}\right))\left(\begin{matrix}71\\120\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\7&5\end{matrix}\right))\left(\begin{matrix}71\\120\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-3\times 7}&-\frac{3}{4\times 5-3\times 7}\\-\frac{7}{4\times 5-3\times 7}&\frac{4}{4\times 5-3\times 7}\end{matrix}\right)\left(\begin{matrix}71\\120\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5&3\\7&-4\end{matrix}\right)\left(\begin{matrix}71\\120\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\times 71+3\times 120\\7\times 71-4\times 120\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\17\end{matrix}\right)
అంకగణితము చేయండి.
x=5,y=17
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
4x+3y=71,7x+5y=120
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
7\times 4x+7\times 3y=7\times 71,4\times 7x+4\times 5y=4\times 120
4x మరియు 7xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 7తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 4తో గుణించండి.
28x+21y=497,28x+20y=480
సరళీకృతం చేయండి.
28x-28x+21y-20y=497-480
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 28x+20y=480ని 28x+21y=497 నుండి వ్యవకలనం చేయండి.
21y-20y=497-480
-28xకు 28xని కూడండి. 28x మరియు -28x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
y=497-480
-20yకు 21yని కూడండి.
y=17
-480కు 497ని కూడండి.
7x+5\times 17=120
7x+5y=120లో yను 17 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
7x+85=120
5 సార్లు 17ని గుణించండి.
7x=35
సమీకరణము యొక్క రెండు భాగాల నుండి 85ని వ్యవకలనం చేయండి.
x=5
రెండు వైపులా 7తో భాగించండి.
x=5,y=17
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.