మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3x-y=4,x-y=1
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3x-y=4
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
3x=y+4
సమీకరణం యొక్క రెండు వైపులా yని కూడండి.
x=\frac{1}{3}\left(y+4\right)
రెండు వైపులా 3తో భాగించండి.
x=\frac{1}{3}y+\frac{4}{3}
\frac{1}{3} సార్లు y+4ని గుణించండి.
\frac{1}{3}y+\frac{4}{3}-y=1
మరొక సమీకరణములో xను \frac{4+y}{3} స్థానంలో ప్రతిక్షేపించండి, x-y=1.
-\frac{2}{3}y+\frac{4}{3}=1
-yకు \frac{y}{3}ని కూడండి.
-\frac{2}{3}y=-\frac{1}{3}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{4}{3}ని వ్యవకలనం చేయండి.
y=\frac{1}{2}
సమీకరణము యొక్క రెండు వైపులా -\frac{2}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{1}{3}\times \frac{1}{2}+\frac{4}{3}
x=\frac{1}{3}y+\frac{4}{3}లో yను \frac{1}{2} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{1}{6}+\frac{4}{3}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{1}{3} సార్లు \frac{1}{2}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{3}{2}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{1}{6}కు \frac{4}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{3}{2},y=\frac{1}{2}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
3x-y=4,x-y=1
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&-1\end{matrix}\right))\left(\begin{matrix}4\\1\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-1\right)}&-\frac{-1}{3\left(-1\right)-\left(-1\right)}\\-\frac{1}{3\left(-1\right)-\left(-1\right)}&\frac{3}{3\left(-1\right)-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{3}{2}\end{matrix}\right)\left(\begin{matrix}4\\1\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 4-\frac{1}{2}\\\frac{1}{2}\times 4-\frac{3}{2}\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\\frac{1}{2}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{3}{2},y=\frac{1}{2}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
3x-y=4,x-y=1
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
3x-x-y+y=4-1
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా x-y=1ని 3x-y=4 నుండి వ్యవకలనం చేయండి.
3x-x=4-1
yకు -yని కూడండి. -y మరియు y విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
2x=4-1
-xకు 3xని కూడండి.
2x=3
-1కు 4ని కూడండి.
x=\frac{3}{2}
రెండు వైపులా 2తో భాగించండి.
\frac{3}{2}-y=1
x-y=1లో xను \frac{3}{2} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
-y=-\frac{1}{2}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{3}{2}ని వ్యవకలనం చేయండి.
x=\frac{3}{2},y=\frac{1}{2}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.