మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3x-4y=7,\frac{1}{2}\left(x+3\right)-y=4
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3x-4y=7
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
3x=4y+7
సమీకరణం యొక్క రెండు వైపులా 4yని కూడండి.
x=\frac{1}{3}\left(4y+7\right)
రెండు వైపులా 3తో భాగించండి.
x=\frac{4}{3}y+\frac{7}{3}
\frac{1}{3} సార్లు 4y+7ని గుణించండి.
\frac{1}{2}\left(\frac{4}{3}y+\frac{7}{3}+3\right)-y=4
మరొక సమీకరణములో xను \frac{4y+7}{3} స్థానంలో ప్రతిక్షేపించండి, \frac{1}{2}\left(x+3\right)-y=4.
\frac{1}{2}\left(\frac{4}{3}y+\frac{16}{3}\right)-y=4
3కు \frac{7}{3}ని కూడండి.
\frac{2}{3}y+\frac{8}{3}-y=4
\frac{1}{2} సార్లు \frac{16+4y}{3}ని గుణించండి.
-\frac{1}{3}y+\frac{8}{3}=4
-yకు \frac{2y}{3}ని కూడండి.
-\frac{1}{3}y=\frac{4}{3}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{8}{3}ని వ్యవకలనం చేయండి.
y=-4
రెండు వైపులా -3తో గుణించండి.
x=\frac{4}{3}\left(-4\right)+\frac{7}{3}
x=\frac{4}{3}y+\frac{7}{3}లో yను -4 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-16+7}{3}
\frac{4}{3} సార్లు -4ని గుణించండి.
x=-3
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{16}{3}కు \frac{7}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-3,y=-4
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
3x-4y=7,\frac{1}{2}\left(x+3\right)-y=4
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\frac{1}{2}\left(x+3\right)-y=4
ప్రామాణిక ఆకృతిలో ఉంచడం కోసం రెండవ సమీకరణమును సరళీకృతం చేయండి.
\frac{1}{2}x+\frac{3}{2}-y=4
\frac{1}{2} సార్లు x+3ని గుణించండి.
\frac{1}{2}x-y=\frac{5}{2}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{3}{2}ని వ్యవకలనం చేయండి.
\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right))\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right))\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right))\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\\frac{1}{2}&-1\end{matrix}\right))\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-\left(-4\times \frac{1}{2}\right)}&-\frac{-4}{3\left(-1\right)-\left(-4\times \frac{1}{2}\right)}\\-\frac{\frac{1}{2}}{3\left(-1\right)-\left(-4\times \frac{1}{2}\right)}&\frac{3}{3\left(-1\right)-\left(-4\times \frac{1}{2}\right)}\end{matrix}\right)\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-4\\\frac{1}{2}&-3\end{matrix}\right)\left(\begin{matrix}7\\\frac{5}{2}\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7-4\times \frac{5}{2}\\\frac{1}{2}\times 7-3\times \frac{5}{2}\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-4\end{matrix}\right)
అంకగణితము చేయండి.
x=-3,y=-4
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.