మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3x-2y=60,2x+3y=17.2
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3x-2y=60
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
3x=2y+60
సమీకరణం యొక్క రెండు వైపులా 2yని కూడండి.
x=\frac{1}{3}\left(2y+60\right)
రెండు వైపులా 3తో భాగించండి.
x=\frac{2}{3}y+20
\frac{1}{3} సార్లు 60+2yని గుణించండి.
2\left(\frac{2}{3}y+20\right)+3y=17.2
మరొక సమీకరణములో xను \frac{2y}{3}+20 స్థానంలో ప్రతిక్షేపించండి, 2x+3y=17.2.
\frac{4}{3}y+40+3y=17.2
2 సార్లు \frac{2y}{3}+20ని గుణించండి.
\frac{13}{3}y+40=17.2
3yకు \frac{4y}{3}ని కూడండి.
\frac{13}{3}y=-22.8
సమీకరణము యొక్క రెండు భాగాల నుండి 40ని వ్యవకలనం చేయండి.
y=-\frac{342}{65}
సమీకరణము యొక్క రెండు వైపులా \frac{13}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{2}{3}\left(-\frac{342}{65}\right)+20
x=\frac{2}{3}y+20లో yను -\frac{342}{65} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-\frac{228}{65}+20
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{2}{3} సార్లు -\frac{342}{65}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{1072}{65}
-\frac{228}{65}కు 20ని కూడండి.
x=\frac{1072}{65},y=-\frac{342}{65}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
3x-2y=60,2x+3y=17.2
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&-2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\17.2\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&-2\\2&3\end{matrix}\right))\left(\begin{matrix}3&-2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&3\end{matrix}\right))\left(\begin{matrix}60\\17.2\end{matrix}\right)
\left(\begin{matrix}3&-2\\2&3\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&3\end{matrix}\right))\left(\begin{matrix}60\\17.2\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\2&3\end{matrix}\right))\left(\begin{matrix}60\\17.2\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-2\times 2\right)}&-\frac{-2}{3\times 3-\left(-2\times 2\right)}\\-\frac{2}{3\times 3-\left(-2\times 2\right)}&\frac{3}{3\times 3-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}60\\17.2\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}&\frac{2}{13}\\-\frac{2}{13}&\frac{3}{13}\end{matrix}\right)\left(\begin{matrix}60\\17.2\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}\times 60+\frac{2}{13}\times 17.2\\-\frac{2}{13}\times 60+\frac{3}{13}\times 17.2\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1072}{65}\\-\frac{342}{65}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{1072}{65},y=-\frac{342}{65}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
3x-2y=60,2x+3y=17.2
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2\times 3x+2\left(-2\right)y=2\times 60,3\times 2x+3\times 3y=3\times 17.2
3x మరియు 2xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 2తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 3తో గుణించండి.
6x-4y=120,6x+9y=51.6
సరళీకృతం చేయండి.
6x-6x-4y-9y=120-51.6
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 6x+9y=51.6ని 6x-4y=120 నుండి వ్యవకలనం చేయండి.
-4y-9y=120-51.6
-6xకు 6xని కూడండి. 6x మరియు -6x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-13y=120-51.6
-9yకు -4yని కూడండి.
-13y=68.4
-51.6కు 120ని కూడండి.
y=-\frac{342}{65}
రెండు వైపులా -13తో భాగించండి.
2x+3\left(-\frac{342}{65}\right)=17.2
2x+3y=17.2లో yను -\frac{342}{65} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
2x-\frac{1026}{65}=17.2
3 సార్లు -\frac{342}{65}ని గుణించండి.
2x=\frac{2144}{65}
సమీకరణం యొక్క రెండు వైపులా \frac{1026}{65}ని కూడండి.
x=\frac{1072}{65}
రెండు వైపులా 2తో భాగించండి.
x=\frac{1072}{65},y=-\frac{342}{65}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.