మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3x-2y=-10,5x-11y=-9
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3x-2y=-10
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
3x=2y-10
సమీకరణం యొక్క రెండు వైపులా 2yని కూడండి.
x=\frac{1}{3}\left(2y-10\right)
రెండు వైపులా 3తో భాగించండి.
x=\frac{2}{3}y-\frac{10}{3}
\frac{1}{3} సార్లు -10+2yని గుణించండి.
5\left(\frac{2}{3}y-\frac{10}{3}\right)-11y=-9
మరొక సమీకరణములో xను \frac{-10+2y}{3} స్థానంలో ప్రతిక్షేపించండి, 5x-11y=-9.
\frac{10}{3}y-\frac{50}{3}-11y=-9
5 సార్లు \frac{-10+2y}{3}ని గుణించండి.
-\frac{23}{3}y-\frac{50}{3}=-9
-11yకు \frac{10y}{3}ని కూడండి.
-\frac{23}{3}y=\frac{23}{3}
సమీకరణం యొక్క రెండు వైపులా \frac{50}{3}ని కూడండి.
y=-1
సమీకరణము యొక్క రెండు వైపులా -\frac{23}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{2}{3}\left(-1\right)-\frac{10}{3}
x=\frac{2}{3}y-\frac{10}{3}లో yను -1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-2-10}{3}
\frac{2}{3} సార్లు -1ని గుణించండి.
x=-4
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{2}{3}కు -\frac{10}{3}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-4,y=-1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
3x-2y=-10,5x-11y=-9
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&-2\\5&-11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\-9\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&-2\\5&-11\end{matrix}\right))\left(\begin{matrix}3&-2\\5&-11\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\5&-11\end{matrix}\right))\left(\begin{matrix}-10\\-9\end{matrix}\right)
\left(\begin{matrix}3&-2\\5&-11\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\5&-11\end{matrix}\right))\left(\begin{matrix}-10\\-9\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\5&-11\end{matrix}\right))\left(\begin{matrix}-10\\-9\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{3\left(-11\right)-\left(-2\times 5\right)}&-\frac{-2}{3\left(-11\right)-\left(-2\times 5\right)}\\-\frac{5}{3\left(-11\right)-\left(-2\times 5\right)}&\frac{3}{3\left(-11\right)-\left(-2\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-10\\-9\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{23}&-\frac{2}{23}\\\frac{5}{23}&-\frac{3}{23}\end{matrix}\right)\left(\begin{matrix}-10\\-9\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{23}\left(-10\right)-\frac{2}{23}\left(-9\right)\\\frac{5}{23}\left(-10\right)-\frac{3}{23}\left(-9\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\-1\end{matrix}\right)
అంకగణితము చేయండి.
x=-4,y=-1
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
3x-2y=-10,5x-11y=-9
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
5\times 3x+5\left(-2\right)y=5\left(-10\right),3\times 5x+3\left(-11\right)y=3\left(-9\right)
3x మరియు 5xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 5తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 3తో గుణించండి.
15x-10y=-50,15x-33y=-27
సరళీకృతం చేయండి.
15x-15x-10y+33y=-50+27
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 15x-33y=-27ని 15x-10y=-50 నుండి వ్యవకలనం చేయండి.
-10y+33y=-50+27
-15xకు 15xని కూడండి. 15x మరియు -15x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
23y=-50+27
33yకు -10yని కూడండి.
23y=-23
27కు -50ని కూడండి.
y=-1
రెండు వైపులా 23తో భాగించండి.
5x-11\left(-1\right)=-9
5x-11y=-9లో yను -1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
5x+11=-9
-11 సార్లు -1ని గుణించండి.
5x=-20
సమీకరణము యొక్క రెండు భాగాల నుండి 11ని వ్యవకలనం చేయండి.
x=-4
రెండు వైపులా 5తో భాగించండి.
x=-4,y=-1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.