మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

3x+4y=0
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు వైపులా 4yని జోడించండి.
3x+4y=0,5x-6y=38
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
3x+4y=0
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
3x=-4y
సమీకరణము యొక్క రెండు భాగాల నుండి 4yని వ్యవకలనం చేయండి.
x=\frac{1}{3}\left(-4\right)y
రెండు వైపులా 3తో భాగించండి.
x=-\frac{4}{3}y
\frac{1}{3} సార్లు -4yని గుణించండి.
5\left(-\frac{4}{3}\right)y-6y=38
మరొక సమీకరణములో xను -\frac{4y}{3} స్థానంలో ప్రతిక్షేపించండి, 5x-6y=38.
-\frac{20}{3}y-6y=38
5 సార్లు -\frac{4y}{3}ని గుణించండి.
-\frac{38}{3}y=38
-6yకు -\frac{20y}{3}ని కూడండి.
y=-3
సమీకరణము యొక్క రెండు వైపులా -\frac{38}{3}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{4}{3}\left(-3\right)
x=-\frac{4}{3}yలో yను -3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=4
-\frac{4}{3} సార్లు -3ని గుణించండి.
x=4,y=-3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
3x+4y=0
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు వైపులా 4yని జోడించండి.
3x+4y=0,5x-6y=38
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}3&4\\5&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\38\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}3&4\\5&-6\end{matrix}\right))\left(\begin{matrix}3&4\\5&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\5&-6\end{matrix}\right))\left(\begin{matrix}0\\38\end{matrix}\right)
\left(\begin{matrix}3&4\\5&-6\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\5&-6\end{matrix}\right))\left(\begin{matrix}0\\38\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\5&-6\end{matrix}\right))\left(\begin{matrix}0\\38\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{3\left(-6\right)-4\times 5}&-\frac{4}{3\left(-6\right)-4\times 5}\\-\frac{5}{3\left(-6\right)-4\times 5}&\frac{3}{3\left(-6\right)-4\times 5}\end{matrix}\right)\left(\begin{matrix}0\\38\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{19}&\frac{2}{19}\\\frac{5}{38}&-\frac{3}{38}\end{matrix}\right)\left(\begin{matrix}0\\38\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}\times 38\\-\frac{3}{38}\times 38\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-3\end{matrix}\right)
అంకగణితము చేయండి.
x=4,y=-3
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
3x+4y=0
మొదటి సమీకరణాన్ని పరిగణించండి. రెండు వైపులా 4yని జోడించండి.
3x+4y=0,5x-6y=38
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
5\times 3x+5\times 4y=0,3\times 5x+3\left(-6\right)y=3\times 38
3x మరియు 5xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 5తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 3తో గుణించండి.
15x+20y=0,15x-18y=114
సరళీకృతం చేయండి.
15x-15x+20y+18y=-114
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 15x-18y=114ని 15x+20y=0 నుండి వ్యవకలనం చేయండి.
20y+18y=-114
-15xకు 15xని కూడండి. 15x మరియు -15x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
38y=-114
18yకు 20yని కూడండి.
y=-3
రెండు వైపులా 38తో భాగించండి.
5x-6\left(-3\right)=38
5x-6y=38లో yను -3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
5x+18=38
-6 సార్లు -3ని గుణించండి.
5x=20
సమీకరణము యొక్క రెండు భాగాల నుండి 18ని వ్యవకలనం చేయండి.
x=4
రెండు వైపులా 5తో భాగించండి.
x=4,y=-3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.