మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

25x+35y=16500,x+y=500
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
25x+35y=16500
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
25x=-35y+16500
సమీకరణము యొక్క రెండు భాగాల నుండి 35yని వ్యవకలనం చేయండి.
x=\frac{1}{25}\left(-35y+16500\right)
రెండు వైపులా 25తో భాగించండి.
x=-\frac{7}{5}y+660
\frac{1}{25} సార్లు -35y+16500ని గుణించండి.
-\frac{7}{5}y+660+y=500
మరొక సమీకరణములో xను -\frac{7y}{5}+660 స్థానంలో ప్రతిక్షేపించండి, x+y=500.
-\frac{2}{5}y+660=500
yకు -\frac{7y}{5}ని కూడండి.
-\frac{2}{5}y=-160
సమీకరణము యొక్క రెండు భాగాల నుండి 660ని వ్యవకలనం చేయండి.
y=400
సమీకరణము యొక్క రెండు వైపులా -\frac{2}{5}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{7}{5}\times 400+660
x=-\frac{7}{5}y+660లో yను 400 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-560+660
-\frac{7}{5} సార్లు 400ని గుణించండి.
x=100
-560కు 660ని కూడండి.
x=100,y=400
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
25x+35y=16500,x+y=500
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}25&35\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16500\\500\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}25&35\\1&1\end{matrix}\right))\left(\begin{matrix}25&35\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}25&35\\1&1\end{matrix}\right))\left(\begin{matrix}16500\\500\end{matrix}\right)
\left(\begin{matrix}25&35\\1&1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}25&35\\1&1\end{matrix}\right))\left(\begin{matrix}16500\\500\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}25&35\\1&1\end{matrix}\right))\left(\begin{matrix}16500\\500\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{25-35}&-\frac{35}{25-35}\\-\frac{1}{25-35}&\frac{25}{25-35}\end{matrix}\right)\left(\begin{matrix}16500\\500\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}&\frac{7}{2}\\\frac{1}{10}&-\frac{5}{2}\end{matrix}\right)\left(\begin{matrix}16500\\500\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{10}\times 16500+\frac{7}{2}\times 500\\\frac{1}{10}\times 16500-\frac{5}{2}\times 500\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\400\end{matrix}\right)
అంకగణితము చేయండి.
x=100,y=400
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
25x+35y=16500,x+y=500
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
25x+35y=16500,25x+25y=25\times 500
25x మరియు xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 1తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 25తో గుణించండి.
25x+35y=16500,25x+25y=12500
సరళీకృతం చేయండి.
25x-25x+35y-25y=16500-12500
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 25x+25y=12500ని 25x+35y=16500 నుండి వ్యవకలనం చేయండి.
35y-25y=16500-12500
-25xకు 25xని కూడండి. 25x మరియు -25x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
10y=16500-12500
-25yకు 35yని కూడండి.
10y=4000
-12500కు 16500ని కూడండి.
y=400
రెండు వైపులా 10తో భాగించండి.
x+400=500
x+y=500లో yను 400 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=100
సమీకరణము యొక్క రెండు భాగాల నుండి 400ని వ్యవకలనం చేయండి.
x=100,y=400
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.