\left\{ \begin{array} { l } { 2 x - 7 y = 8 } \\ { y - 2 x = - 3.20 } \end{array} \right.
x, yని పరిష్కరించండి
x=1.2
y=-0.8
గ్రాఫ్
షేర్ చేయి
క్లిప్బోర్డ్కు కాపీ చేయబడింది
2x-7y=8,-2x+y=-3.2
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x-7y=8
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=7y+8
సమీకరణం యొక్క రెండు వైపులా 7yని కూడండి.
x=\frac{1}{2}\left(7y+8\right)
రెండు వైపులా 2తో భాగించండి.
x=\frac{7}{2}y+4
\frac{1}{2} సార్లు 7y+8ని గుణించండి.
-2\left(\frac{7}{2}y+4\right)+y=-3.2
మరొక సమీకరణములో xను \frac{7y}{2}+4 స్థానంలో ప్రతిక్షేపించండి, -2x+y=-3.2.
-7y-8+y=-3.2
-2 సార్లు \frac{7y}{2}+4ని గుణించండి.
-6y-8=-3.2
yకు -7yని కూడండి.
-6y=4.8
సమీకరణం యొక్క రెండు వైపులా 8ని కూడండి.
y=-0.8
రెండు వైపులా -6తో భాగించండి.
x=\frac{7}{2}\left(-0.8\right)+4
x=\frac{7}{2}y+4లో yను -0.8 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-\frac{14}{5}+4
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా \frac{7}{2} సార్లు -0.8ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{6}{5}
-\frac{14}{5}కు 4ని కూడండి.
x=\frac{6}{5},y=-0.8
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x-7y=8,-2x+y=-3.2
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&-7\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-3.2\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&-7\\-2&1\end{matrix}\right))\left(\begin{matrix}2&-7\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-7\\-2&1\end{matrix}\right))\left(\begin{matrix}8\\-3.2\end{matrix}\right)
\left(\begin{matrix}2&-7\\-2&1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-7\\-2&1\end{matrix}\right))\left(\begin{matrix}8\\-3.2\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-7\\-2&1\end{matrix}\right))\left(\begin{matrix}8\\-3.2\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-7\left(-2\right)\right)}&-\frac{-7}{2-\left(-7\left(-2\right)\right)}\\-\frac{-2}{2-\left(-7\left(-2\right)\right)}&\frac{2}{2-\left(-7\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}8\\-3.2\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}&-\frac{7}{12}\\-\frac{1}{6}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}8\\-3.2\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}\times 8-\frac{7}{12}\left(-3.2\right)\\-\frac{1}{6}\times 8-\frac{1}{6}\left(-3.2\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}\\-\frac{4}{5}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{6}{5},y=-\frac{4}{5}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x-7y=8,-2x+y=-3.2
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-2\times 2x-2\left(-7\right)y=-2\times 8,2\left(-2\right)x+2y=2\left(-3.2\right)
2x మరియు -2xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -2తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 2తో గుణించండి.
-4x+14y=-16,-4x+2y=-6.4
సరళీకృతం చేయండి.
-4x+4x+14y-2y=-16+6.4
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -4x+2y=-6.4ని -4x+14y=-16 నుండి వ్యవకలనం చేయండి.
14y-2y=-16+6.4
4xకు -4xని కూడండి. -4x మరియు 4x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
12y=-16+6.4
-2yకు 14yని కూడండి.
12y=-9.6
6.4కు -16ని కూడండి.
y=-\frac{4}{5}
రెండు వైపులా 12తో భాగించండి.
-2x-\frac{4}{5}=-3.2
-2x+y=-3.2లో yను -\frac{4}{5} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
-2x=-\frac{12}{5}
సమీకరణం యొక్క రెండు వైపులా \frac{4}{5}ని కూడండి.
x=\frac{6}{5}
రెండు వైపులా -2తో భాగించండి.
x=\frac{6}{5},y=-\frac{4}{5}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
ఉదాహరణలు
వర్గ సమీకరణం
{ x } ^ { 2 } - 4 x - 5 = 0
త్రికోణమితి
4 \sin \theta \cos \theta = 2 \sin \theta
రేఖీయ సమీకరణం
y = 3x + 4
అరిథ్మెటిక్
699 * 533
మాత్రిక
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ఏకకాల సమీకరణం
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
అవకలనం
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
అనుకలనం
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
పరిమితులు
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}