మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2x+7y=15,3x-5y=23
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x+7y=15
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=-7y+15
సమీకరణము యొక్క రెండు భాగాల నుండి 7yని వ్యవకలనం చేయండి.
x=\frac{1}{2}\left(-7y+15\right)
రెండు వైపులా 2తో భాగించండి.
x=-\frac{7}{2}y+\frac{15}{2}
\frac{1}{2} సార్లు -7y+15ని గుణించండి.
3\left(-\frac{7}{2}y+\frac{15}{2}\right)-5y=23
మరొక సమీకరణములో xను \frac{-7y+15}{2} స్థానంలో ప్రతిక్షేపించండి, 3x-5y=23.
-\frac{21}{2}y+\frac{45}{2}-5y=23
3 సార్లు \frac{-7y+15}{2}ని గుణించండి.
-\frac{31}{2}y+\frac{45}{2}=23
-5yకు -\frac{21y}{2}ని కూడండి.
-\frac{31}{2}y=\frac{1}{2}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{45}{2}ని వ్యవకలనం చేయండి.
y=-\frac{1}{31}
సమీకరణము యొక్క రెండు వైపులా -\frac{31}{2}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{7}{2}\left(-\frac{1}{31}\right)+\frac{15}{2}
x=-\frac{7}{2}y+\frac{15}{2}లో yను -\frac{1}{31} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{7}{62}+\frac{15}{2}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{7}{2} సార్లు -\frac{1}{31}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{236}{31}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{7}{62}కు \frac{15}{2}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{236}{31},y=-\frac{1}{31}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x+7y=15,3x-5y=23
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&7\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\23\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&7\\3&-5\end{matrix}\right))\left(\begin{matrix}2&7\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\3&-5\end{matrix}\right))\left(\begin{matrix}15\\23\end{matrix}\right)
\left(\begin{matrix}2&7\\3&-5\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\3&-5\end{matrix}\right))\left(\begin{matrix}15\\23\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&7\\3&-5\end{matrix}\right))\left(\begin{matrix}15\\23\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2\left(-5\right)-7\times 3}&-\frac{7}{2\left(-5\right)-7\times 3}\\-\frac{3}{2\left(-5\right)-7\times 3}&\frac{2}{2\left(-5\right)-7\times 3}\end{matrix}\right)\left(\begin{matrix}15\\23\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{31}&\frac{7}{31}\\\frac{3}{31}&-\frac{2}{31}\end{matrix}\right)\left(\begin{matrix}15\\23\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{31}\times 15+\frac{7}{31}\times 23\\\frac{3}{31}\times 15-\frac{2}{31}\times 23\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{236}{31}\\-\frac{1}{31}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{236}{31},y=-\frac{1}{31}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x+7y=15,3x-5y=23
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
3\times 2x+3\times 7y=3\times 15,2\times 3x+2\left(-5\right)y=2\times 23
2x మరియు 3xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 3తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 2తో గుణించండి.
6x+21y=45,6x-10y=46
సరళీకృతం చేయండి.
6x-6x+21y+10y=45-46
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 6x-10y=46ని 6x+21y=45 నుండి వ్యవకలనం చేయండి.
21y+10y=45-46
-6xకు 6xని కూడండి. 6x మరియు -6x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
31y=45-46
10yకు 21yని కూడండి.
31y=-1
-46కు 45ని కూడండి.
y=-\frac{1}{31}
రెండు వైపులా 31తో భాగించండి.
3x-5\left(-\frac{1}{31}\right)=23
3x-5y=23లో yను -\frac{1}{31} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
3x+\frac{5}{31}=23
-5 సార్లు -\frac{1}{31}ని గుణించండి.
3x=\frac{708}{31}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{5}{31}ని వ్యవకలనం చేయండి.
x=\frac{236}{31}
రెండు వైపులా 3తో భాగించండి.
x=\frac{236}{31},y=-\frac{1}{31}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.