మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2x+5y+1=0,3x-2y-8=0
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x+5y+1=0
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x+5y=-1
సమీకరణము యొక్క రెండు భాగాల నుండి 1ని వ్యవకలనం చేయండి.
2x=-5y-1
సమీకరణము యొక్క రెండు భాగాల నుండి 5yని వ్యవకలనం చేయండి.
x=\frac{1}{2}\left(-5y-1\right)
రెండు వైపులా 2తో భాగించండి.
x=-\frac{5}{2}y-\frac{1}{2}
\frac{1}{2} సార్లు -5y-1ని గుణించండి.
3\left(-\frac{5}{2}y-\frac{1}{2}\right)-2y-8=0
మరొక సమీకరణములో xను \frac{-5y-1}{2} స్థానంలో ప్రతిక్షేపించండి, 3x-2y-8=0.
-\frac{15}{2}y-\frac{3}{2}-2y-8=0
3 సార్లు \frac{-5y-1}{2}ని గుణించండి.
-\frac{19}{2}y-\frac{3}{2}-8=0
-2yకు -\frac{15y}{2}ని కూడండి.
-\frac{19}{2}y-\frac{19}{2}=0
-8కు -\frac{3}{2}ని కూడండి.
-\frac{19}{2}y=\frac{19}{2}
సమీకరణం యొక్క రెండు వైపులా \frac{19}{2}ని కూడండి.
y=-1
సమీకరణము యొక్క రెండు వైపులా -\frac{19}{2}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{5}{2}\left(-1\right)-\frac{1}{2}
x=-\frac{5}{2}y-\frac{1}{2}లో yను -1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{5-1}{2}
-\frac{5}{2} సార్లు -1ని గుణించండి.
x=2
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా \frac{5}{2}కు -\frac{1}{2}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=2,y=-1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x+5y+1=0,3x-2y-8=0
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\8\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&5\\3&-2\end{matrix}\right))\left(\begin{matrix}2&5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&-2\end{matrix}\right))\left(\begin{matrix}-1\\8\end{matrix}\right)
\left(\begin{matrix}2&5\\3&-2\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&-2\end{matrix}\right))\left(\begin{matrix}-1\\8\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&-2\end{matrix}\right))\left(\begin{matrix}-1\\8\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-5\times 3}&-\frac{5}{2\left(-2\right)-5\times 3}\\-\frac{3}{2\left(-2\right)-5\times 3}&\frac{2}{2\left(-2\right)-5\times 3}\end{matrix}\right)\left(\begin{matrix}-1\\8\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}&\frac{5}{19}\\\frac{3}{19}&-\frac{2}{19}\end{matrix}\right)\left(\begin{matrix}-1\\8\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}\left(-1\right)+\frac{5}{19}\times 8\\\frac{3}{19}\left(-1\right)-\frac{2}{19}\times 8\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-1\end{matrix}\right)
అంకగణితము చేయండి.
x=2,y=-1
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x+5y+1=0,3x-2y-8=0
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
3\times 2x+3\times 5y+3=0,2\times 3x+2\left(-2\right)y+2\left(-8\right)=0
2x మరియు 3xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 3తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 2తో గుణించండి.
6x+15y+3=0,6x-4y-16=0
సరళీకృతం చేయండి.
6x-6x+15y+4y+3+16=0
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 6x-4y-16=0ని 6x+15y+3=0 నుండి వ్యవకలనం చేయండి.
15y+4y+3+16=0
-6xకు 6xని కూడండి. 6x మరియు -6x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
19y+3+16=0
4yకు 15yని కూడండి.
19y+19=0
16కు 3ని కూడండి.
19y=-19
సమీకరణము యొక్క రెండు భాగాల నుండి 19ని వ్యవకలనం చేయండి.
y=-1
రెండు వైపులా 19తో భాగించండి.
3x-2\left(-1\right)-8=0
3x-2y-8=0లో yను -1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
3x+2-8=0
-2 సార్లు -1ని గుణించండి.
3x-6=0
-8కు 2ని కూడండి.
3x=6
సమీకరణం యొక్క రెండు వైపులా 6ని కూడండి.
x=2
రెండు వైపులా 3తో భాగించండి.
x=2,y=-1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.