మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2x+3y=7.8,5x+4y=13.2
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x+3y=7.8
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=-3y+7.8
సమీకరణము యొక్క రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
x=\frac{1}{2}\left(-3y+7.8\right)
రెండు వైపులా 2తో భాగించండి.
x=-\frac{3}{2}y+\frac{39}{10}
\frac{1}{2} సార్లు -3y+7.8ని గుణించండి.
5\left(-\frac{3}{2}y+\frac{39}{10}\right)+4y=13.2
మరొక సమీకరణములో xను -\frac{3y}{2}+\frac{39}{10} స్థానంలో ప్రతిక్షేపించండి, 5x+4y=13.2.
-\frac{15}{2}y+\frac{39}{2}+4y=13.2
5 సార్లు -\frac{3y}{2}+\frac{39}{10}ని గుణించండి.
-\frac{7}{2}y+\frac{39}{2}=13.2
4yకు -\frac{15y}{2}ని కూడండి.
-\frac{7}{2}y=-\frac{63}{10}
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{39}{2}ని వ్యవకలనం చేయండి.
y=\frac{9}{5}
సమీకరణము యొక్క రెండు వైపులా -\frac{7}{2}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-\frac{3}{2}\times \frac{9}{5}+\frac{39}{10}
x=-\frac{3}{2}y+\frac{39}{10}లో yను \frac{9}{5} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=\frac{-27+39}{10}
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{3}{2} సార్లు \frac{9}{5}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{6}{5}
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{27}{10}కు \frac{39}{10}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=\frac{6}{5},y=\frac{9}{5}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x+3y=7.8,5x+4y=13.2
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&3\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7.8\\13.2\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}2&3\\5&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}7.8\\13.2\end{matrix}\right)
\left(\begin{matrix}2&3\\5&4\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}7.8\\13.2\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))\left(\begin{matrix}7.8\\13.2\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3\times 5}&-\frac{3}{2\times 4-3\times 5}\\-\frac{5}{2\times 4-3\times 5}&\frac{2}{2\times 4-3\times 5}\end{matrix}\right)\left(\begin{matrix}7.8\\13.2\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{7}&\frac{3}{7}\\\frac{5}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}7.8\\13.2\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{7}\times 7.8+\frac{3}{7}\times 13.2\\\frac{5}{7}\times 7.8-\frac{2}{7}\times 13.2\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}\\\frac{9}{5}\end{matrix}\right)
అంకగణితము చేయండి.
x=\frac{6}{5},y=\frac{9}{5}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x+3y=7.8,5x+4y=13.2
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
5\times 2x+5\times 3y=5\times 7.8,2\times 5x+2\times 4y=2\times 13.2
2x మరియు 5xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 5తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 2తో గుణించండి.
10x+15y=39,10x+8y=26.4
సరళీకృతం చేయండి.
10x-10x+15y-8y=39-26.4
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 10x+8y=26.4ని 10x+15y=39 నుండి వ్యవకలనం చేయండి.
15y-8y=39-26.4
-10xకు 10xని కూడండి. 10x మరియు -10x విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
7y=39-26.4
-8yకు 15yని కూడండి.
7y=12.6
-26.4కు 39ని కూడండి.
y=\frac{9}{5}
రెండు వైపులా 7తో భాగించండి.
5x+4\times \frac{9}{5}=13.2
5x+4y=13.2లో yను \frac{9}{5} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
5x+\frac{36}{5}=13.2
4 సార్లు \frac{9}{5}ని గుణించండి.
5x=6
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{36}{5}ని వ్యవకలనం చేయండి.
x=\frac{6}{5}
రెండు వైపులా 5తో భాగించండి.
x=\frac{6}{5},y=\frac{9}{5}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.