మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2x+3y=6,-4x+3y=12
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2x+3y=6
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
2x=-3y+6
సమీకరణము యొక్క రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
x=\frac{1}{2}\left(-3y+6\right)
రెండు వైపులా 2తో భాగించండి.
x=-\frac{3}{2}y+3
\frac{1}{2} సార్లు -3y+6ని గుణించండి.
-4\left(-\frac{3}{2}y+3\right)+3y=12
మరొక సమీకరణములో xను -\frac{3y}{2}+3 స్థానంలో ప్రతిక్షేపించండి, -4x+3y=12.
6y-12+3y=12
-4 సార్లు -\frac{3y}{2}+3ని గుణించండి.
9y-12=12
3yకు 6yని కూడండి.
9y=24
సమీకరణం యొక్క రెండు వైపులా 12ని కూడండి.
y=\frac{8}{3}
రెండు వైపులా 9తో భాగించండి.
x=-\frac{3}{2}\times \frac{8}{3}+3
x=-\frac{3}{2}y+3లో yను \frac{8}{3} స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=-4+3
లవమును లవంసార్లు మరియు హారమును హారముసార్లు గుణించడం ద్వారా -\frac{3}{2} సార్లు \frac{8}{3}ని గుణించండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=-1
-4కు 3ని కూడండి.
x=-1,y=\frac{8}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2x+3y=6,-4x+3y=12
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&3\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\12\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&3\\-4&3\end{matrix}\right))\left(\begin{matrix}2&3\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-4&3\end{matrix}\right))\left(\begin{matrix}6\\12\end{matrix}\right)
\left(\begin{matrix}2&3\\-4&3\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-4&3\end{matrix}\right))\left(\begin{matrix}6\\12\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-4&3\end{matrix}\right))\left(\begin{matrix}6\\12\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-3\left(-4\right)}&-\frac{3}{2\times 3-3\left(-4\right)}\\-\frac{-4}{2\times 3-3\left(-4\right)}&\frac{2}{2\times 3-3\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}6\\12\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&-\frac{1}{6}\\\frac{2}{9}&\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}6\\12\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 6-\frac{1}{6}\times 12\\\frac{2}{9}\times 6+\frac{1}{9}\times 12\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\\frac{8}{3}\end{matrix}\right)
అంకగణితము చేయండి.
x=-1,y=\frac{8}{3}
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
2x+3y=6,-4x+3y=12
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2x+4x+3y-3y=6-12
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -4x+3y=12ని 2x+3y=6 నుండి వ్యవకలనం చేయండి.
2x+4x=6-12
-3yకు 3yని కూడండి. 3y మరియు -3y విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
6x=6-12
4xకు 2xని కూడండి.
6x=-6
-12కు 6ని కూడండి.
x=-1
రెండు వైపులా 6తో భాగించండి.
-4\left(-1\right)+3y=12
-4x+3y=12లో xను -1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
4+3y=12
-4 సార్లు -1ని గుణించండి.
3y=8
సమీకరణము యొక్క రెండు భాగాల నుండి 4ని వ్యవకలనం చేయండి.
y=\frac{8}{3}
రెండు వైపులా 3తో భాగించండి.
x=-1,y=\frac{8}{3}
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.