మెయిన్ కంటెంట్ కు వెళ్లండి
a, bని పరిష్కరించండి
Tick mark Image

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

2a+3b=4,-2a+3b=-16
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
2a+3b=4
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న aని వేరు చేయడం ద్వారా aని పరిష్కరించండి.
2a=-3b+4
సమీకరణము యొక్క రెండు భాగాల నుండి 3bని వ్యవకలనం చేయండి.
a=\frac{1}{2}\left(-3b+4\right)
రెండు వైపులా 2తో భాగించండి.
a=-\frac{3}{2}b+2
\frac{1}{2} సార్లు -3b+4ని గుణించండి.
-2\left(-\frac{3}{2}b+2\right)+3b=-16
మరొక సమీకరణములో aను -\frac{3b}{2}+2 స్థానంలో ప్రతిక్షేపించండి, -2a+3b=-16.
3b-4+3b=-16
-2 సార్లు -\frac{3b}{2}+2ని గుణించండి.
6b-4=-16
3bకు 3bని కూడండి.
6b=-12
సమీకరణం యొక్క రెండు వైపులా 4ని కూడండి.
b=-2
రెండు వైపులా 6తో భాగించండి.
a=-\frac{3}{2}\left(-2\right)+2
a=-\frac{3}{2}b+2లో bను -2 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు aని నేరుగా పరిష్కరించవచ్చు.
a=3+2
-\frac{3}{2} సార్లు -2ని గుణించండి.
a=5
3కు 2ని కూడండి.
a=5,b=-2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
2a+3b=4,-2a+3b=-16
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}2&3\\-2&3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}4\\-16\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}2&3\\-2&3\end{matrix}\right))\left(\begin{matrix}2&3\\-2&3\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-16\end{matrix}\right)
\left(\begin{matrix}2&3\\-2&3\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-16\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\-2&3\end{matrix}\right))\left(\begin{matrix}4\\-16\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2\times 3-3\left(-2\right)}&-\frac{3}{2\times 3-3\left(-2\right)}\\-\frac{-2}{2\times 3-3\left(-2\right)}&\frac{2}{2\times 3-3\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}4\\-16\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{4}\\\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}4\\-16\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 4-\frac{1}{4}\left(-16\right)\\\frac{1}{6}\times 4+\frac{1}{6}\left(-16\right)\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
అంకగణితము చేయండి.
a=5,b=-2
a మరియు b మాత్రిక మూలకాలను విస్తరించండి.
2a+3b=4,-2a+3b=-16
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
2a+2a+3b-3b=4+16
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -2a+3b=-16ని 2a+3b=4 నుండి వ్యవకలనం చేయండి.
2a+2a=4+16
-3bకు 3bని కూడండి. 3b మరియు -3b విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
4a=4+16
2aకు 2aని కూడండి.
4a=20
16కు 4ని కూడండి.
a=5
రెండు వైపులా 4తో భాగించండి.
-2\times 5+3b=-16
-2a+3b=-16లో aను 5 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు bని నేరుగా పరిష్కరించవచ్చు.
-10+3b=-16
-2 సార్లు 5ని గుణించండి.
3b=-6
సమీకరణం యొక్క రెండు వైపులా 10ని కూడండి.
b=-2
రెండు వైపులా 3తో భాగించండి.
a=5,b=-2
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.