మెయిన్ కంటెంట్ కు వెళ్లండి
y, xని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

x-3y=0
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
10y+2x=16,-3y+x=0
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
10y+2x=16
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న yని వేరు చేయడం ద్వారా yని పరిష్కరించండి.
10y=-2x+16
సమీకరణము యొక్క రెండు భాగాల నుండి 2xని వ్యవకలనం చేయండి.
y=\frac{1}{10}\left(-2x+16\right)
రెండు వైపులా 10తో భాగించండి.
y=-\frac{1}{5}x+\frac{8}{5}
\frac{1}{10} సార్లు -2x+16ని గుణించండి.
-3\left(-\frac{1}{5}x+\frac{8}{5}\right)+x=0
మరొక సమీకరణములో yను \frac{-x+8}{5} స్థానంలో ప్రతిక్షేపించండి, -3y+x=0.
\frac{3}{5}x-\frac{24}{5}+x=0
-3 సార్లు \frac{-x+8}{5}ని గుణించండి.
\frac{8}{5}x-\frac{24}{5}=0
xకు \frac{3x}{5}ని కూడండి.
\frac{8}{5}x=\frac{24}{5}
సమీకరణం యొక్క రెండు వైపులా \frac{24}{5}ని కూడండి.
x=3
సమీకరణము యొక్క రెండు వైపులా \frac{8}{5}తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
y=-\frac{1}{5}\times 3+\frac{8}{5}
y=-\frac{1}{5}x+\frac{8}{5}లో xను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
y=\frac{-3+8}{5}
-\frac{1}{5} సార్లు 3ని గుణించండి.
y=1
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -\frac{3}{5}కు \frac{8}{5}ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
y=1,x=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
x-3y=0
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
10y+2x=16,-3y+x=0
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}10&2\\-3&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}16\\0\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}10&2\\-3&1\end{matrix}\right))\left(\begin{matrix}10&2\\-3&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}10&2\\-3&1\end{matrix}\right))\left(\begin{matrix}16\\0\end{matrix}\right)
\left(\begin{matrix}10&2\\-3&1\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}10&2\\-3&1\end{matrix}\right))\left(\begin{matrix}16\\0\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}10&2\\-3&1\end{matrix}\right))\left(\begin{matrix}16\\0\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10-2\left(-3\right)}&-\frac{2}{10-2\left(-3\right)}\\-\frac{-3}{10-2\left(-3\right)}&\frac{10}{10-2\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}16\\0\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{16}&-\frac{1}{8}\\\frac{3}{16}&\frac{5}{8}\end{matrix}\right)\left(\begin{matrix}16\\0\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{16}\times 16\\\frac{3}{16}\times 16\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
అంకగణితము చేయండి.
y=1,x=3
y మరియు x మాత్రిక మూలకాలను విస్తరించండి.
x-3y=0
రెండవ సమీకరణాన్ని పరిగణించండి. రెండు భాగాల నుండి 3yని వ్యవకలనం చేయండి.
10y+2x=16,-3y+x=0
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
-3\times 10y-3\times 2x=-3\times 16,10\left(-3\right)y+10x=0
10y మరియు -3yని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను -3తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 10తో గుణించండి.
-30y-6x=-48,-30y+10x=0
సరళీకృతం చేయండి.
-30y+30y-6x-10x=-48
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా -30y+10x=0ని -30y-6x=-48 నుండి వ్యవకలనం చేయండి.
-6x-10x=-48
30yకు -30yని కూడండి. -30y మరియు 30y విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
-16x=-48
-10xకు -6xని కూడండి.
x=3
రెండు వైపులా -16తో భాగించండి.
-3y+3=0
-3y+x=0లో xను 3 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు yని నేరుగా పరిష్కరించవచ్చు.
-3y=-3
సమీకరణము యొక్క రెండు భాగాల నుండి 3ని వ్యవకలనం చేయండి.
y=1
రెండు వైపులా -3తో భాగించండి.
y=1,x=3
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.