మెయిన్ కంటెంట్ కు వెళ్లండి
x, yని పరిష్కరించండి
Tick mark Image
గ్రాఫ్

వెబ్ శోధన నుండి ఇదే రకమైన ప్రాబ్లెమ్‌లు

షేర్ చేయి

0.4x+0.3y=0.7,11x-10y=1
ప్రతిక్షేపణను ఉపయోగించి సమీకరణముల జతను పరిష్కరించడం కోసం, ముందుగా సమీకరణములలోని ఒక దానిని చరరాశులలోని ఒక దానితో పరిష్కరించండి. ఆపై ఆ చరరాశి యొక్క ఫలితాన్ని మరొక సమీకరణములో ప్రతిక్షేపించండి.
0.4x+0.3y=0.7
సమీకరణముల నుండి ఒక దానిని ఎంచుకుని, సమాన గుర్తుకి ఎడమవైపు ఉన్న xని వేరు చేయడం ద్వారా xని పరిష్కరించండి.
0.4x=-0.3y+0.7
సమీకరణము యొక్క రెండు భాగాల నుండి \frac{3y}{10}ని వ్యవకలనం చేయండి.
x=2.5\left(-0.3y+0.7\right)
సమీకరణము యొక్క రెండు వైపులా 0.4తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=-0.75y+1.75
2.5 సార్లు \frac{-3y+7}{10}ని గుణించండి.
11\left(-0.75y+1.75\right)-10y=1
మరొక సమీకరణములో xను \frac{-3y+7}{4} స్థానంలో ప్రతిక్షేపించండి, 11x-10y=1.
-8.25y+19.25-10y=1
11 సార్లు \frac{-3y+7}{4}ని గుణించండి.
-18.25y+19.25=1
-10yకు -\frac{33y}{4}ని కూడండి.
-18.25y=-18.25
సమీకరణము యొక్క రెండు భాగాల నుండి 19.25ని వ్యవకలనం చేయండి.
y=1
సమీకరణము యొక్క రెండు వైపులా -18.25తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
x=\frac{-3+7}{4}
x=-0.75y+1.75లో yను 1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
x=1
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -0.75కు 1.75ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
x=1,y=1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.
0.4x+0.3y=0.7,11x-10y=1
సమీకరణములను ప్రామాణిక ఆకృతిలో ఉంచండి, ఆపై సమీకరణముల వ్యవస్థను పరిష్కరించడంలో మాత్రికలను ఉపయోగించండి.
\left(\begin{matrix}0.4&0.3\\11&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0.7\\1\end{matrix}\right)
సమీకరణములను మాత్రిక ఆకృతిలో వ్రాయండి.
inverse(\left(\begin{matrix}0.4&0.3\\11&-10\end{matrix}\right))\left(\begin{matrix}0.4&0.3\\11&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.4&0.3\\11&-10\end{matrix}\right))\left(\begin{matrix}0.7\\1\end{matrix}\right)
\left(\begin{matrix}0.4&0.3\\11&-10\end{matrix}\right) మాత్రిక విలోమంతో ఎడమ వైపు సమీకరణాన్ని గుణించండి.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.4&0.3\\11&-10\end{matrix}\right))\left(\begin{matrix}0.7\\1\end{matrix}\right)
మాత్రిక మరియు దాని విలోమం యొక్క లబ్ధం ఏకరూప మాత్రిక అవుతుంది.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.4&0.3\\11&-10\end{matrix}\right))\left(\begin{matrix}0.7\\1\end{matrix}\right)
సమాన గుర్తుకు ఎడమ వైపు ఉన్న మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{0.4\left(-10\right)-0.3\times 11}&-\frac{0.3}{0.4\left(-10\right)-0.3\times 11}\\-\frac{11}{0.4\left(-10\right)-0.3\times 11}&\frac{0.4}{0.4\left(-10\right)-0.3\times 11}\end{matrix}\right)\left(\begin{matrix}0.7\\1\end{matrix}\right)
2\times 2 మాతృక \left(\begin{matrix}a&b\\c&d\end{matrix}\right) కొరకు విలోమ మాతృక \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), కాబట్టి మాతృక సమీకరణాన్ని మాతృక గుణకార సమస్యగా తిరిగి వ్రాయవచ్చు.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{100}{73}&\frac{3}{73}\\\frac{110}{73}&-\frac{4}{73}\end{matrix}\right)\left(\begin{matrix}0.7\\1\end{matrix}\right)
అంకగణితము చేయండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{100}{73}\times 0.7+\frac{3}{73}\\\frac{110}{73}\times 0.7-\frac{4}{73}\end{matrix}\right)
మాత్రికలను గుణించండి.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
అంకగణితము చేయండి.
x=1,y=1
x మరియు y మాత్రిక మూలకాలను విస్తరించండి.
0.4x+0.3y=0.7,11x-10y=1
అపనయమను ద్వారా పరిష్కరించడం కోసం, చరరాశులలోని ఒకదాని యొక్క గుణకము రెండు సమీకరణములలో ఒకే విధంగా ఉండాలి, తద్వారా రెండు సమీకరణములను వ్యవకలనం చేసినప్పుడు చరరాశిని రద్దు చేయవచ్చు.
11\times 0.4x+11\times 0.3y=11\times 0.7,0.4\times 11x+0.4\left(-10\right)y=0.4
\frac{2x}{5} మరియు 11xని సమానం చేయడం కోసం, మొదటి సమీకరణం యొక్క అన్ని విలువలను 11తో గుణించండి మరియు రెండవ సమీకరణము యొక్క అన్ని విలువలను 0.4తో గుణించండి.
4.4x+3.3y=7.7,4.4x-4y=0.4
సరళీకృతం చేయండి.
4.4x-4.4x+3.3y+4y=7.7-0.4
సమాన గుర్తుకు ఇరు వైపులా ఉన్న ఒకే రకమైన విలువలను వ్యవకలనం చేయడం ద్వారా 4.4x-4y=0.4ని 4.4x+3.3y=7.7 నుండి వ్యవకలనం చేయండి.
3.3y+4y=7.7-0.4
-\frac{22x}{5}కు \frac{22x}{5}ని కూడండి. \frac{22x}{5} మరియు -\frac{22x}{5} విలువలు రద్దు చేయబడ్డాయి, కేవలం ఒక్క చరరాశి మాత్రమే ఉన్న సమీకరణాన్ని పరిష్కరించడం సాధ్యం కాదు.
7.3y=7.7-0.4
4yకు \frac{33y}{10}ని కూడండి.
7.3y=7.3
ఉమ్మడి హారమును కనుగొనడం మరియు లవములను కూడటం ద్వారా -0.4కు 7.7ని కూడండి. సాధ్యమైతే అత్యంత తక్కువ విలువల యొక్క భిన్నముని తగ్గించండి.
y=1
సమీకరణము యొక్క రెండు వైపులా 7.3తో భాగించండి, ఇది భిన్నము యొక్క విలోమరాశులతో రెండు వైపులా గుణించడంతో సమానం.
11x-10=1
11x-10y=1లో yను 1 స్థానంలో ప్రతిక్షేపించండి. ఫలితంగా వచ్చిన సమీకరణములో కేవలం ఒక్క చరరాశి మాత్రమే ఉంది కనుక, మీరు xని నేరుగా పరిష్కరించవచ్చు.
11x=11
సమీకరణం యొక్క రెండు వైపులా 10ని కూడండి.
x=1
రెండు వైపులా 11తో భాగించండి.
x=1,y=1
సిస్టమ్ ఇప్పుడు సరి చేయబడింది.